Abstract:
Some demonstrative embodiments include apparatus, system and method of communicating a Multiple-Input-Multiple-Output (MIMO) transmission with Golay Sequence Set (GSS). For example, an apparatus may include logic and circuitry configured to cause a wireless station to generate a Golay Sequence Set (GSS) including a plurality of complementary Golay sequence pairs based on a plurality of weight vectors, the plurality of weight vectors including one or more weight vectors corresponding to one or more respective stream numbers, which are equal to or greater than 9; and transmit a Multiple-Input-Multiple-Output (MIMO) transmission over a plurality of spatial streams, the MIMO transmission including at least one field transmitted over a spatial stream having a stream number equal to or greater than 9, the field is based on a complementary Golay sequence pair of the plurality of complementary Golay sequence pairs, which is based on a weight vector corresponding to the stream number.
Abstract:
Power offset signaling techniques for network-assisted interference cancellation and suppression (NAICS) receivers are described. In one embodiment, for example, user equipment (UE) may comprise at least one radio frequency (RF) transceiver, at least one RF antenna, and logic, at least a portion of which is in hardware, the logic to receive a radio resource control (RRC) connection control message comprising a RadioResourceConfigDedicated field and perform a radio resource configuration procedure in response to receipt of the RRC connection control message, the RRC connection control message to comprise network-assisted interference cancellation and suppression (NAICS) assistance information that identifies a power offset value for one or more transmissions to the UE over a physical downlink shared channel (PDSCH) of a serving cell of the UE. Other embodiments are described and claimed.
Abstract:
Some demonstrative embodiments include apparatuses, devices systems and/or methods of steering an antenna array. For example, an apparatus may include a baseband processor including a plurality of baseband processing chains to process signals to be communicated via a plurality of antenna modules of an antenna array, wherein the baseband processing chains include a plurality of frequency domain delay modules, a frequency domain delay module of the delay modules is to apply a time delay to a signal to be communicated via an antenna module of the plurality of antenna modules.
Abstract:
For example, a wireless station may be configured to map a plurality of data symbols to Orthogonal Frequency-Division Multiplexing (OFDM) symbols in a plurality of spatial streams, to may map a plurality of pilot sequences to the OFDM symbols according to a pilot mapping scheme, and to transmit a Multi-In-Multi-Out (MIMO) transmission based on the plurality of spatial streams.
Abstract:
For example, a wireless station may be configured to modulate a plurality of data bit sequences into a plurality of data blocks according to a dual carrier modulation, to map the plurality of data blocks to a plurality of spatial streams according to a space-time diversity scheme, and to transmit a MIMO transmission based on the plurality of spatial streams.
Abstract:
Communication signals using a first and a second frequency band in a wireless network is described herein. The first frequency band may be associated with a first beamwidth while the second frequency band may be associated with a second beamwidth. An apparatus may include receiver circuitry arranged to receive first signals in a first frequency band associated with a first beamwidth and second signals in a second frequency band associated with a second beamwidth, the first signals comprising a frame synchronization parameter and the second signals comprising frame alignment signals. The apparatus may further include processor circuitry coupled to the receiver circuitry, the processor circuitry arranged to activate or deactivate the receiver circuitry to receive the frame alignment signals based on the frame synchronization parameter. Other embodiments may be described and/or claimed.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of handover of a wireless beamformed link. For example, an apparatus may include a wireless communication unit to communicate between a wireless communication node and a mobile device via a beamformed link between the wireless communication node and the mobile device, the wireless communication unit is to determine a handover candidate for handing over the mobile device, based on at least one beamforming parameter of the beamformed link.
Abstract:
Embodiments of a millimeter-wave (mmW) communication device and methods for intelligent control of transmit power and power density are generally described herein. In some embodiments, a mmW base station includes a beamforming processor that is to configure a large-aperture array antenna for multi-beam transmissions at mmW frequencies to a plurality of user equipment (UE). The beamforming processor may allocate each UE a non-interfering spectral portion of a full channel bandwidth that is substantially less than the full channel bandwidth and perform multi-beam beamforming to concurrently direct a plurality of multi-user multiple-input multiple-output (MU-MIMO) antenna beams to the UEs for a concurrent transmission of data streams to the UEs within their allocated spectral portion in accordance with a transmit power allocation.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of establishing a wireless beamformed link. For example, an apparatus may include a wireless communication controller to control a first wireless communication device to communicate millimeter-wave (mmWave) signals with a second wireless communication device over a mmWave frequency band, the mmWave signals including signals transmitted according to a plurality of different transmit (Tx) beamforming settings, the wireless communication controller is to control the first wireless communication device to communicate feedback information, which is based on the mmWave signals, over a non-mmWave frequency band, and to control the first wireless communication device to establish with the second wireless communication device a beamformed link over the mmWave frequency band, the beamformed link using a Tx beamforming setting, which is determined based on the feedback information.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of establishing a wireless beamformed link. For example, an apparatus may include a wireless communication controller to control a first wireless communication device to communicate millimeter-wave (mmWave) signals with a second wireless communication device over a mmWave frequency band, the mmWave signals including signals transmitted according to a plurality of different transmit (Tx) beamforming settings, the wireless communication controller is to control the first wireless communication device to communicate feedback information, which is based on the mmWave signals, over a non-mmWave frequency band, and to control the first wireless communication device to establish with the second wireless communication device a beamformed link over the mmWave frequency band, the beamformed link using a Tx beamforming setting, which is determined based on the feedback information.