Abstract:
Technology for a user equipment (UE) operable to adjust a receiver timing is disclosed. The UE can decode a plurality of channel-state information reference signals (CSI-RSs) received from a plurality of cooperating nodes, wherein the plurality of cooperating nodes are included in a coordination set of a Coordinated MultiPoint (CoMP) system. The UE can generate a plurality of received RS timings from the plurality of CSI-RSs, wherein the received RS timings represent timings from the plurality of cooperating nodes. The UE can determine a composite received RS timing from the plurality of received RS timings. The UE can adjust the receiver timing based on the composite received RS timing.
Abstract:
Methods, systems, and storage media for providing multi-cell, multi-point single user (SU) multiple input and multiple output (MIMO) operations are described. In embodiments, an apparatus may receive and process a first set of one or more independent data streams received in a downlink channel from a first transmission point. The apparatus may receive and process a second set of one or more independent data streams received in a downlink channel from a second transmission point. The apparatus may process control information received from the first transmission point or the second transmission point. The control information may include an indication of a quasi co-location assumption to be used for estimating channel characteristics for reception of the first set of one or more independent data streams or the second set of one or more independent data streams. Other embodiments may be described and/or claimed.
Abstract:
Dynamic transmission of non-zero power channel state information resource signals and interference measurement resources is described. Such dynamic transmission reduces or eliminates a need to buffer and store channel and interference measurements The described approach also reduces the overhead due to transmission of those resources and enables flexible time-domain channel state information requests.
Abstract:
Systems and methods use multiple spatial layers for physical multicast channel transmission. Certain embodiments introduce additional multimedia broadcast multicast service reference signals that support more than one antenna ports for multicast broadcast single frequency network transmissions. To reduce channel estimation complexity due to the multicast broadcast single frequency network reference signal design, resource elements of the multicast broadcast single frequency network reference signals may have a nested structure. To assist modulation and coding scheme selection, a user according to certain embodiments also independently reports block error rate measurements for each spatial layer of the multicast channel.
Abstract:
Methods, systems, and storage media for providing multi-cell, multi-point single user (SU) multiple input and multiple output (MIMO) operations are described. In embodiments, an apparatus may receive and process a first set of one or more independent data streams received in a downlink channel from a first transmission point. The apparatus may receive and process a second set of one or more independent data streams received in a downlink channel from a second transmission point. The apparatus may process control information received from the first transmission point or the second transmission point. The control information may include an indication of a quasi co-location assumption to be used for estimating channel characteristics for reception of the first set of one or more independent data streams or the second set of one or more independent data streams. Other embodiments may be described and/or claimed.
Abstract:
Communication signals using a first and a second frequency band in a wireless network is described herein. The first frequency band may be associated with a first beamwidth while the second frequency band may be associated with a second beamwidth. An apparatus may include receiver circuitry arranged to receive first signals in a first frequency band associated with a first beamwidth and second signals in a second frequency band associated with a second beamwidth, the first signals comprising a frame synchronization parameter and the second signals comprising frame alignment signals. The apparatus may further include processor circuitry coupled to the receiver circuitry, the processor circuitry arranged to activate or deactivate the receiver circuitry to receive the frame alignment signals based on the frame synchronization parameter. Other embodiments may be described and/or claimed.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of wireless backhaul communication between wireless communication nodes. For example, a wireless communication controller may control a wireless communication node to communicate with one or more other wireless communication nodes via one or more backhaul links of a backhaul network over a first frequency band, and to communicate with a control station via a control link over a second frequency band, the first frequency band is higher than the second frequency band.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of wireless backhaul communication between wireless communication nodes. For example, a wireless communication controller may control a wireless communication node to communicate with one or more other wireless communication nodes via one or more backhaul links of a backhaul network over a first frequency band, and to communicate with a control station via a control link over a second frequency band, the first frequency band is higher than the second frequency band.
Abstract:
Examples are disclosed for sending or receiving channel state information (CSI) reports associated with coordinated multi-point (CoMP) schemes. The examples include user equipment (UE) constraining CSI feedback to one or more transmission points implementing a CoMP scheme with the UE. The examples also include a transmission point such as an evolved node B (eNB) triggering CSI feedback and receiving a CSI report in response to the trigger. The CSI report generated based on the UE constraining CSI feedback. Constraining CSI feedback may include the UE generating fewer CSI reports, reusing information between CSI reports or increasing an amount of time allowed for processing and generating CSI reports. Other examples are described and claimed.
Abstract:
Methods, apparatuses, and systems are described related to interference averaging to generate feedback information and interference averaging to demodulate receives signals. In embodiments, an evolved Node B (eNB) may transmit interference averaging information to a user equipment (UE) including a time domain averaging indicator indicating a time domain averaging window to be used by the UE for averaging interference measurements in a time domain or a frequency domain averaging indicator to indicate a frequency domain averaging window to be used by the UE for averaging interference measurements in a frequency domain. Additionally, or alternatively, the eNB may transmit an interference resource group (IRG) indicator to the UE to indicate an IRG over which the UE is to perform interference averaging to facilitate demodulation of signals received by the UE from the eNB.