Abstract:
A method for colorimetric radiation dosimetry includes subjecting an aggregate including a polymeric matrix having uniformly dispersed nanoparticles therein to radiation. The aggregate is soaked in a solution selected to dissolve decomposed pieces of the polymeric matrix to release into the solution nanoparticles from the decomposed pieces. Color of the solution is compared to a reference to determine a dose of radiation based on number of liberated nanoparticles.
Abstract:
After formation of a disposable gate structure, a raised active semiconductor region includes a vertical stack, from bottom to top, of an electrical-dopant-doped semiconductor material portion and a carbon-doped semiconductor material portion. A planarization dielectric layer is deposited over the raised active semiconductor region, and the disposable gate structure is replaced with a replacement gate structure. A contact via cavity is formed through the planarization dielectric material layer by an anisotropic etch process that employs a fluorocarbon gas as an etchant. The carbon in the carbon-doped semiconductor material portion retards the anisotropic etch process, and the carbon-doped semiconductor material portion functions as a stopping layer for the anisotropic etch process, thereby making the depth of the contact via cavity less dependent on variations on the thickness of the planarization dielectric layer or pattern factors.
Abstract:
Electromechanical sensors that employ Janus micro/nano-components and techniques for the fabrication thereof are provided. In one aspect, a method of fabricating an electromechanical sensor includes the following steps. A back gate is formed on a substrate. A gate dielectric is deposited over the back gate. An intermediate layer is formed on the back gate having a micro-fluidic channel formed therein. Top electrodes are formed above the micro-fluidic channel. One or more Janus components are placed in the micro-fluidic channel, wherein each of the Janus components has a first portion having an electrically conductive material and a second portion having an electrically insulating material. The micro-fluidic channel is filled with a fluid. The electrically insulating material has a negative surface charge at a pH of the fluid and an isoelectric point at a pH less than the pH of the fluid.
Abstract:
A method for colorimetric radiation dosimetry includes subjecting an aggregate including a polymeric matrix having uniformly dispersed nanoparticles therein to radiation. The aggregate is soaked in a solution selected to dissolve decomposed pieces of the polymeric matrix to release into the solution nanoparticles from the decomposed pieces. Color of the solution is compared to a reference to determine a dose of radiation based on number of liberated nanoparticles.
Abstract:
A method for colorimetric radiation dosimetry includes subjecting an aggregate including a polymeric matrix having uniformly dispersed nanoparticles therein to radiation. The aggregate is soaked in a solution selected to dissolve decomposed pieces of the polymeric matrix to release into the solution nanoparticles from the decomposed pieces. Color of the solution is compared to a reference to determine a dose of radiation based on number of liberated nanoparticles.
Abstract:
In one aspect, a memory cell capacitor is provided. The memory cell capacitor includes a silicon wafer; at least one trench in the silicon wafer; a silicide within the trench that serves as a bottom electrode of the memory cell capacitor, wherein a contact resistance between the bottom electrode and the silicon wafer is from about 1×10−6 ohm-cm2 to about 1×10−9 ohm-cm2; a dielectric in the trench covering the bottom electrode; and a top electrode in the trench separated from the bottom electrode by the dielectric.
Abstract:
A system for self-aligning diamagnetic materials includes first and second magnets contacting each other along a contact line and having a diametric magnetization perpendicular to the contact line and a diamagnetic rod positioned to levitate above the contact line of the first and second magnets.
Abstract:
Embodiments of the invention are directed to a system for detecting neurotransmitters. A non-limiting example of the system includes a porous electrode. A system can also include a pH sensor attached to the porous electrode, wherein the pH sensor includes a sensing electrode and a reference electrode. The system can also include electronic circuitry in communication with the pH sensor.
Abstract:
Embodiments of the invention are directed to a system for detecting neurotransmitters. A non-limiting example of the system includes a porous electrode. A system can also include a pH sensor attached to the porous electrode, wherein the pH sensor includes a sensing electrode and a reference electrode. The system can also include electronic circuitry in communication with the pH sensor.
Abstract:
Chemical sensors and methods of forming and making the same include an input terminal and an output terminal. A negative capacitance structure is configured to control a current passing horizontally from the input terminal to the output terminal, and has a first and second metal layer that are arranged vertically with respect to one another, and a ferroelectric layer positioned between the first and second metal layers. An electrode is in electrical contact with the negative capacitance structure, and is configured to change potential, to exceed a threshold, thereby triggering a discontinuous polarization change in the negative capacitance structure.