Abstract:
The present disclosure relates to a method, a device and a system for inspecting a moving object based on cosmic rays, pertaining to the field of radiation imaging and safety inspection techniques. The method includes: detecting whether a speed of the inspected moving object is within a preset range; recording a motion trajectory of the moving object with a monitoring device; acquiring information about charged particles in the cosmic rays with a position sensitive detector, the information about charged particles including track information of the charged particles; determining the moving object by matching positions of the motion trajectory and the track information; reconstructing the track of the charged particles according to the information about the charged particles; and recognizing the material inside the moving object based on the track reconstruction.
Abstract:
The present disclosure relates to X-ray imaging systems and methods. An exemplary system may comprise a distributed X-ray source arrangement, a fixed grating module, an X-ray detecting device, and a computer workstation. In one illustrative implementation, X-ray sources of the distributed incoherent X-ray source arrangement may sequentially generate and emit X-rays to an object to be detected. Further, for each exposure, the X-ray detecting device may receive the X-rays, wherein after a series of stepping exposures and corresponding data acquisitions, at each pixel of the X-ray detecting device, X-ray intensities are represented as an intensity curve; the intensity curve may be compared to an intensity curve in the absence of the object to be detected, and a pixel value at each pixel may be obtained from a variation of the intensity curves; and image information of the object to be detected may be obtained according to such pixel values.
Abstract:
The present disclosure relates to multi-modality detection systems and methods. One illustrative multi-modality detection system may include a distributed radiation source configured to irradiate an object under detection, a primary collimator configured to separate rays of the distributed radiation source into two parts, wherein one part is for CT detection and the other part is for XRD detection, a CT detection device configured to perform a CT detection to acquire a CT image of the object under detection, and an XRD detection device configured to perform an XRD detection to acquire an XRD image of the object under detection, wherein the CT detection and the XRD detection are performed simultaneously.
Abstract:
The present invention discloses a sample injection device for sample collection and sample thermal desorption. The device comprises: a sample collection structure; a piston type adsorber having an adsorption cavity capable of being arranged to be in communication with the sample collection structure; a piston cylinder defining a piston chamber that is configured for accommodating the piston type adsorber and configured to be in communication with the adsorption cavity; a thermal desorption chamber that is configured to be in communication with the adsorption cavity and the piston chamber and is configured to thermally desorb the sample adsorbed in the adsorption cavity; and a pump that is configured to be in communication with the piston chamber via a conduit and is configured to pump a sample diffused in an ambient gas into the adsorption cavity through the sample collection structure, the adsorption cavity being configured to adsorb the sample collected by the sample collection structure; the piston type adsorber is configured to be movable between a sample collecting position where the adsorption cavity is located outside the thermal desorption chamber and in communication with the sample collection structure so as to adsorb the sample collected by the sample collection structure and a sample desorbing position where the adsorption cavity is located inside the thermal desorption chamber so that the adsorbed sample is thermally desorbed in the thermal desorption chamber. There are also provided a method of collecting and desorbing a sample by using the abovementioned device, and a trace detection apparatus.
Abstract:
The present disclosure provides a method and a system for inspecting goods. The method includes the steps of: obtaining a transmission image and a HSCODE of inspected goods; processing the transmission image to obtain a region of interest; retrieving from a model library a model created based on the HSCODE, in accordance with the HSCODE of the inspected goods; and determining whether there are any goods not registered in a customs declaration that are contained in the region of interest based on the model. With the above solution, it is possible to inspect goods in a container efficiently, so as to find out whether there are goods not indicated in the customs declaration that are concealed in the container.
Abstract:
A CT detection method is provided, comprising the steps of: (1) scanning circumferentially an object to be detected by means of X-ray according to a preset angle sampling value, which represents the number of sampling points in one circle, so as to obtain a group of projection sampling data in different projection angles, the preset angle sampling value being greater than 1000; (2) processing the projection sampling data so as to obtain projection data of a plurality of virtual sub-focuses equivalent to a large focus of radiation source in a CT system; and (3) implementing an image reconstruction according to the projection data of the plurality of virtual sub-focuses.
Abstract:
The present disclosure discloses a method and system for inspecting cargoes. The method comprises: acquiring a transmission image of the inspected cargoes; processing the transmission image to acquire an interested region; extracting features from the interested region, and determining cargo information of the inspected cargoes according to the extracted features; and providing a proposed treatment suggestion of the cargoes based on the determined cargo information and at least a part of information in a manifest. The above solution can facilitate an image judgment person to accurately judge whether the concerned cargoes are allowed to pass.
Abstract:
A vehicle inspection method is disclosed, comprising steps of: implementing a ray scanning inspection on an inspected vehicle, so as to obtain a ray scanning inspection image of the inspected vehicle; extracting vehicle characteristic information; comparing the vehicle characteristic information of the inspected vehicle to vehicle reference characteristics stored in a database, selecting a closest vehicle reference characteristic which is closest to the vehicle characteristic information, and finding out a closest ray transmission reference image on the basis of a corresponding relationship between the vehicle reference characteristics and ray transmission reference images stored in the storage unit; determining a first distinguishing area of the ray scanning inspection image from the closest ray transmission reference image by comparing the ray scanning inspection image of the inspected vehicle to the closest ray transmission reference image. A vehicle inspection system is also disclosed.
Abstract:
The disclosure provides a system and a method for customs in-transit supervision. The system comprises: a port clearance subsystem configured to collect and process information of a supervised object at a port; a risk management subsystem configured to determine an in-transit supervision scheme for the supervised object based on a risk level of the supervised object; an in-transit supervision apparatus configured to supervise the supervised object in transit according to the in-transit supervision scheme; and a central supervision subsystem configured to conduct information interaction with the port clearance subsystem, the risk management system and the in-transit supervision apparatus and transmit instructions for controlling the subsystems and the apparatus. By introducing comparison between origin port information and destination port information and a risk management mechanism, the system and the method according to the disclosure improves the specificity, efficiency and intensity of supervision.
Abstract:
A CT system for security check and a method thereof are provided. The method includes: reading inspection data of an inspected object; inserting at least one three-dimensional (3D) Fictional Threat Image (FTI) into a 3D inspection image of the inspected object, which is obtained from the inspection data; receiving a selection of at least one region in the 3D inspection image including the 3D FTI or at least one region in a two-dimensional (2D) inspection image including a 2D FTI corresponding to the 3D FTI, wherein the 2D inspection image is obtained from the 3D inspection image or is obtained from the inspection data; and providing a feedback of the 3D inspection image including at least one 3D FTI in response to the selection. With the above solution, it is convenient for a user to rapidly mark a suspected object in the CT image, and provides a feedback of whether a FTI is included.