Abstract:
The present invention discloses a corona discharge assembly, an ion mobility spectrometer, an computer program and an computer readable storage medium. The corona discharge assembly includes: an ionization discharge chamber, wherein the ionization discharge chamber includes a metal corona cylinder, and the metal corona cylinder is provided with an inlet of a gas to be analyzed and a trumpet-shaped front port which is conductive to forming a gathered electric field; multiple corona pins, in which on-off of a high voltage can be independently controlled, are installed at the center of the metal corona cylinder in an insulating manner. The present invention further discloses an ion mobility spectrometer using the above-mentioned corona discharge assembly. The present invention can be used to prolong the service life of the integral corona discharge assembly; the discharge voltage of the ion source can be reduced and the discharge stability thereof can be improved; in comparison with the suspended installation of a pin-shaped electrode, since the multiple corona pins are fixed on the PCB, during installation, the position of the electrode can be accurate and stable, thus mass manufacture is easier to achieve.
Abstract:
An embodiment of the present invention provides a Raman spectroscopic detection method for detecting a sample in a vessel, comprising the steps of: (a) measuring a Raman spectrum of the vessel to obtain a first Raman spectroscopic signal; (b) measuring a Raman spectrum of the sample through the vessel to obtain a second Raman spectroscopic signal; (c) removing an interference caused by the Raman spectrum of the vessel from the second Raman spectroscopic signal on basis of the first Raman spectroscopic signal to obtain a third Raman spectroscopic signal of the sample itself; and (d) identifying the sample on basis of the third Raman spectroscopic signal. By means of the above method, the Raman spectrum of the sample in the vessel may be detected correctly so as to identify the sample to be detected efficiently.
Abstract:
The present invention discloses a corona discharge assembly, including: an ionization discharge chamber, wherein the ionization discharge chamber includes a metal corona cylinder, and the metal corona cylinder is provided with an inlet of a gas to be analyzed and an annular piece-shaped port which forms a non-uniform electric field with corona pins and is provided with a circular hole at the middle; a rotating shaft is installed on the cylinder wall of the metal corona cylinder in an insulating manner, the rotating shaft is vertical to the axial line of the metal corona cylinder, and a turntable provided with multiple corona pins at the outer edge is installed at the end part of the rotating shaft the axial line of the metal corona cylinder passes in parallel through the rotation plane of the turntable. The present invention further discloses an ion mobility spectrometer using the above-mentioned corona discharge assembly.
Abstract:
CT devices and methods thereof are disclosed. The CT device comprises a circular electron beam emission array including a plurality of electron beam emission units that are distributed uniformly along a circle, wherein each electron beam emission unit emits electron beams that are substantially parallel to an axis of the circular electron beam emission array in sequence under the control of a control signal; a circular reflection target which is disposed to be coaxial with the circular electron beam emission array, wherein the electron beams bombard the circular reflection target to generate X-rays that intersect the axis of the circular electron beam emission array; and a circular detector array which is disposed to be coaxial with the circular reflection target and configured to include a plurality of detection units which receive the X-rays after they have passed through an object to be detected.
Abstract:
Disclosed are a method and a device for security-inspection of liquid articles with dual-energy CT imaging. The method comprises the steps of obtaining one or more CT images including physical attributes of liquid article to be inspected by CT scanning and a dual-energy reconstruction method; acquiring the physical attributes of each liquid article from the CT image; and determining whether there are drugs concealed in the inspected liquid article based on the difference between the acquired physical attributes and reference physical attributes of the inspected liquid article. The CT scanning can be implemented by a normal CT scanning technique, or a spiral CT scanning technique. In the normal CT scanning technique, the scan position can be preset, or set by the operator with a DR image, or set by automatic analysis of the DR image.
Abstract:
The present disclosure provides a High-Purity Germanium (HPGe) detector, comprising: a HPGe single crystal having an intrinsic region exposed surface; a first electrode and a second electrode connected to a first contact electrode and a second contact electrode of the HPGe single crystal respectively; and a conductive guard ring arranged in the intrinsic region exposed surface around the first electrode to separate the intrinsic region exposed surface into an inner region and an outer region. A leakage current derived from the intrinsic region exposed surface of the HPGe detector can be separated from the current of the HPGe detector by the conductive guard ring provided in the surface, thereby suppressing the interference of the surface leakage current.
Abstract:
The present invention discloses a corona discharge assembly, an ion mobility spectrometer, an computer program and an computer readable storage medium. The corona discharge assembly includes: an ionization discharge chamber, wherein the ionization discharge chamber includes a metal corona cylinder, and the metal corona cylinder is provided with an inlet of a gas to be analyzed and a trumpet-shaped front port which is conductive to forming a gathered electric field; multiple corona pins, in which on-off of a high voltage can be independently controlled, are installed at the center of the metal corona cylinder in an insulating manner. The present invention further discloses an ion mobility spectrometer using the above-mentioned corona discharge assembly. The present invention can be used to prolong the service life of the integral corona discharge assembly; the discharge voltage of the ion source can be reduced and the discharge stability thereof can be improved; in comparison with the suspended installation of a pin-shaped electrode, since the multiple corona pins are fixed on the PCB, during installation, the position of the electrode can be accurate and stable, thus mass manufacture is easier to achieve.
Abstract:
The present disclosure provides methods and devices for locating a plurality of interested objects in CT imaging. Location of the interested objects in the three-dimensional space can be determined by using three projection images that are substantially perpendicular to each other. The method can rapidly locate interested objects in a CT image without pre-reconstruction of the CT image even if there are a plurality of interested objects in the field of view. The algorithm does not involve interactive steps. The method is rapid and effective, and thus applicable to industrial applications.
Abstract:
A ray emission device and an imaging system with the ray emission device are disclosed. The ray emission device comprises: a cylinder; a ray source disposed in the cylinder for emitting a ray; and a collimator disposed in the cylinder. The collimator enables the ray emitted by the ray source to form sectorial ray beams at a plurality of positions in an axial direction of the cylinder. The cylinder has a pencil beam forming part arranged over an axial length of the cylinder corresponding to the plurality of positions. The sectorial ray beams form pencil beams through the pencil beam forming part when the cylinder rotates around a rotation axis.
Abstract:
The present invention discloses an asymmetric field ion mobility spectrometer. It comprises an ionization source, for generating ions; an electrode plate; a plurality of electrode filaments, arranged in opposite to and spaced apart from the electrode plate by an analysis gap, wherein a high voltage of electrical field is applied between the electrode plate and the electrode filaments to form an ion migration area, the electrode filaments used to collect the ions that do not pass through the ion migration area; and a collection electrode, disposed at a rear end of the ion migration area, and collecting the ions that have passed through the ion migration area. The present asymmetric field ion mobility spectrometer is capable of improving accuracy of identifying peak positions of the ions, reducing scanning time of DC voltage and types of compensation voltage, thereby increasing ion detection efficiency.