摘要:
A semiconductor component that includes a field plate and a semiconductor device and a method of manufacturing the semiconductor component. A semiconductor material includes an epitaxial layer disposed on a semiconductor substrate. A trench having an upper portion and a lower portion is formed in the epitaxial layer. A portion of a field plate is formed in the lower portion of the trench, wherein the field plate is electrically isolated from trench sidewalls. A gate structure is formed in the upper portion of the trench, wherein a gate oxide is formed from opposing sidewalls of the trench. Gate electrodes are formed adjacent to the gate oxide formed from the opposing sidewalls and a dielectric material is formed adjacent to the gate electrode. Another portion of the field plate is formed in the upper portion of the trench and cooperates with the portion of the field plate formed in the lower portion of the trench to form the field plate.
摘要:
In one embodiment, a semiconductor device is formed in a body of semiconductor material. The semiconductor device includes a charge compensating trench formed in proximity to active portions of the device. The charge compensating trench includes a trench filled with various layers of semiconductor material including opposite conductivity type layers.
摘要:
In one embodiment, a pair of sidewall passivated trench contacts is formed in a substrate to provide electrical contact to a sub-surface feature. A doped region is diffused between the pair of sidewall passivated trenches to provide low resistance contacts.
摘要:
In one embodiment, an MOS transistor is formed with trench gates. The gate structure of the trench gates generally has a first insulator that has a first thickness in one region of the gate and a second thickness in a second region of the gate.
摘要:
In one embodiment, an edge termination structure is formed in a semiconductor layer of a first conductivity type. The termination structure includes an isolation trench and a conductive layer in contact with the semiconductor layer. The semiconductor layer is formed over a semiconductor substrate of a second conductivity type. In a further embodiment, the isolation trench includes a plurality of shapes that comprise portions of the semiconductor layer.
摘要:
A method of making a semiconductor device (10) includes depositing a first conductive layer (50) on a first surface (41) to control a channel (70) of the semiconductor device at a second surface (40) perpendicular to the first surface. The method further includes etching a first dielectric film (32) to form a gap (53) between the first surface and a control electrode (68) of the semiconductor device, and depositing a conductive material (56) in the gap to electrically connect the first conductive layer to the control electrode.
摘要:
A method of manufacturing a semiconductor component includes sequentially disposing a first electrically conductive layer (130), a dielectric layer (140), and a sacrificial layer (150) over a substrate (110). An etch mask is used to defined a gate stack (210) comprised of the sacrificial layer (150), the dielectric layer, and the first electrically conductive layer. Another dielectric layer (310) is deposited over the substrate (110) and the gate stack (210). This second dielectric layer (310) is planarized to expose the sacrificial layer (150). The sacrificial layer (150) of the gate stack (210) and the dielectric layer (140) of the gate stack (210) are sequentially removed, and another electrically conductive layer (740) is deposited over the first electrically conductive layer of the gate stack to form a gate electrode made of, among other features, two electrically conductive layers.
摘要:
A method and structure for reducing capacitance between interconnect lines (11, 24, 26) utilizes air gaps (17, 47) between the interconnect lines (11, 24, 26). Deposited over the interconnect lines (11, 24, 26), a silane oxide layer (14) forms a "breadloaf" shape which can be sputter etched to seal the air gaps (17, 47). Prior to the deposition of the sputter etched silane oxide layer (14), spacers (13, 42, 43) can be formed around the interconnect lines (11, 24, 26) to increase the aspect ratio of gaps (23, 31) between the interconnect lines (11, 24, 26) which facilitates the formation of the "breadloaf" shape of the silane oxide layer (14).