摘要:
A method of processing multi-layer films, the method including: (1) processing a plurality of layers according to selected parameters, (2) determining a plurality of optical characteristics each associated with one of the plurality of layers and determined during the processing of the associated one of the plurality of layers, and (3) determining dynamic processing progressions each based on one of the plurality of optical characteristics that is associated with a particular one of the plurality of layers undergoing the processing.
摘要:
An NMOS and PMOS device pair having a selected stress level and type exerted on a respective channel region and method for forming the same, the method including providing a semiconductor substrate; forming isolation regions to separate active areas comprising a PMOS device region and an NMOS device region; lithographically patterning the semiconductor substrate and etching respective recessed areas including the respective NMOS and PMOS device regions into the silicon semiconductor substrate to a predetermined depth; backfilling the respective recessed areas with at least one semiconductor alloy; and, forming gate structures and offset spacers over the respective NMOS and PMOS device regions.
摘要:
Methods and structures for critical dimension or profile measurement are disclosed. The method provides a substrate having periodic openings therein. Material layers are formed in the openings, substantially planarizing a surface of the substrate. A scattering method is applied to the substrate with the material layers for critical dimension (CD) or profile measurement.
摘要:
A method for cleaning semiconductor substrates includes a DI water clean operation that uses a spin speed no greater than 350 rpm. The cleaning method may include additional cleaning operations such as an organic clean, an aqueous chemical clean or a DI water/ozone clean. The cleaning method may be used to clean substrates after the conclusion of an etching procedure which exposes a single film between a Cu-containing conductive material and the environment. The spin speed of the DI water clean operation prevents copper corrosion due to breakdown of the film that separates the Cu-containing conductive material from the environment.
摘要:
A novel process for cleaning a semiconductor wafer is disclosed. The process of the invention reduces or eliminates charge-up damage caused by friction which is generated between the wafer and rinsing water or other fluid as the wafer is rotated during the cleaning process. In one embodiment of the invention, the wafer is placed on a rotatable chuck or support inside a cleaning chamber. An ion-forming gas is introduced into the chamber as the cleaning fluid is dispensed onto the wafer. The gas increases the electrical conductivity of the cleaning fluid by forming ions in the fluid, thereby reducing or eliminating cleaning fluid charge-up and preventing breakdown of dielectric materials and/or corrosion of metal on the wafer. In another embodiment, the gas is dissolved in the cleaning fluid, which is dispensed on the rotating wafer. In still another embodiment, the cleaning fluid is heated and then dispensed onto the wafer.
摘要:
A method of forming a silicided gate on a substrate having active regions is provided. The method comprises forming silicide in the active regions and a portion of the gate, leaving a remaining portion of the gate unsilicided; forming a shielding layer over the active regions and gate after the forming step; forming a coating layer over portions of the shielding layer over the active regions; opening the shielding layer to expose the gate, wherein the coating layer protects the portions of the shielding layer over the active regions during the opening step; depositing a metal layer over the exposed gate; and annealing to cause the metal to react with the gate to silicidize at least a part of the remaining portion of the gate.
摘要:
A new method for fabricating a borderless interconnection in a semiconductor device is provided. During fabrication, the device includes an interlevel dielectric (ILD) layer, a metal silicide layer, and a stop layer disposed between the ILD and metal silicide layers. The stop layer may be formed of silicon nitride or silicon oxynitride, and the metal silicide layer may be a nickel silicide. The method includes etching the ILD layer to expose at least a portion of the stop layer and then performing a nitrogen plasma treatment on the exposed portion of the stop layer. After the treatment, the exposed portion of the stop layer is removed to provide the interconnection hole. Because of the plasma treatment, damage to the metal silicide underlying the stop layer will be minimized when the stop layer is removed.
摘要:
A method for using an isotropic wet etching process chemical process for trimming semiconductor feature sizes with improved critical dimension control including providing a hard mask overlying a substrate included in a semiconductor wafer said hard mask patterned for masking a portion of the substrate for forming a semiconductor feature according to an anisotropic plasma etching process; isotropically wet etching the hard mask to reduce a dimension of the hard mask prior to carrying out the anisotropic plasma etching process; and, anisotropically plasma etching a portion of the substrate not covered by the hard mask to form the semiconductor feature.
摘要:
A process is described for transferring a photoresist pattern into a substrate. In one embodiment a stack comprised of a top photoresist layer, a middle ARC layer, and a bottom hardmask is formed over a gate electrode layer. A line in the photoresist pattern is anisotropically transferred through the ARC and hardmask. Then an isotropic etch to trim the linewidth by 0 to 50 nm per edge is performed simultaneously on the photoresist, ARC and hardmask. This method minimizes the amount of line end shortening to less than three times the dimension trimmed from one line edge. Since a majority of the photoresist layer is retained, the starting photoresist thickness can be reduced by 1000 Angstroms or more to increase process window. The pattern is then etched through the underlying layer to form a gate electrode. The method can also be used to form STI features in a substrate.
摘要:
Within a method for forming a spacer layer from a second layer formed of a second material laminated upon a first layer formed of a first material, in turn formed over a topographic feature, there is employed a three step etch method. The three step etch method employs: (1) a first etch method having a first enhanced etch selectivity for the second material with respect to the first material; (2) a second etch method having a second substantially neutral etch selectivity for the second material with respect to the first material; and (3) a third etch method having a third enhanced etch selectivity for the first material with respect to the second material. In accord with the three step etch method, the spacer layer is fabricated with enhanced dimensional control.