Abstract:
The variable valve timing controller controls the valve timing of the intake valve. The variable valve timing controller has a shaft, the stator fixed on the engine and generating the magnetic field around the shaft and rotational phase converter converting the torque applied to the shaft. When the valve timing is in the most delayed timing, the engine can be started. The rotational phase of this timing is called the feasible phase. When the stator stops generating the magnetic field, the load torque arise on the shaft. The rotational phase converter varies the rotational phase into the feasible phase with receiving the load torque from the shaft.
Abstract:
A valve timing control device includes a drive pulley driven by a crankshaft of an engine, and a driven camshaft. The camshaft has a cam that serves to open and close an intake port. An engine valve is spring-loaded by a valve spring, whereas the cam opens or closes the engine valve against the bias of the spring. Torque is transmittable between the drive pulley and the camshaft, and a rotation angle adjusting mechanism is provided therebetween. The rotation angle adjusting mechanism has a movable operating member being movable in a radial direction.
Abstract:
A rotary valve internal combustion engine comprising a crankshaft, a throttle (23), a throttle actuator, a cylinder head (7), a combustion chamber (8), and at least one rotary valve (1). The rotary valve (1) having at least two ports (2, 3) terminating as openings (4, 5) in its periphery, the cylinder head (7) having a bore (11) in which the rotary valve (1) rotates, a window (6) in the bore (11) communicating with the combustion chamber (8), the openings (4, 5) successively aligning with the window (6) by virtue of the rotation, a drive mechanism comprising a phase change means (18), the drive mechanism driving the rotary valve (1). The at least two ports (2, 3) comprise an inlet port (2) and an exhaust port (3), and the phase change means (18) applies a phase change in response to changes in the operating conditions of the engine over at least one engine cycle.
Abstract:
A valve timing adjusting device adjusts valve timing by shifting rotational phase of a camshaft relative to a crankshaft. The device has an electric motor for rotating a rotor member that drives and moves a phase defining member to a required position. The phase defining member defines the rotational phase of the camshaft in accordance with the position itself. The phase defining member may be a planetary gear rotatably supported on an eccentric shaft as the rotor member. The planetary gear works as both a reduction mechanism and a phase shifting mechanism. The phase defining member may be a control pin slidably supported on a rotatable member as the rotor member. A planetary gear may be additionally used as the reduction mechanism for rotating the rotatable member. It is possible to control the phase with high accuracy and durability.
Abstract:
Upon transmission of a first torque from a first brake portion to a first eccentric shaft, the first eccentric shaft rotates in a retarding direction relative to a rotating member. This causes a first planetary gear to rotate in an advancing direction together with a first output shaft and a driven shaft. Upon transmission of a second torque from a second brake portion to a second eccentric shaft, the second eccentric shaft rotates in a retarding direction relative to the rotating member. This causes a second planetary gear to rotate in the advancing direction together with a second output shaft and the first eccentric shaft, relative to the rotating member, while maintaining rotation in the advancing direction relative to the second eccentric shaft and causes the first planetary gear to rotate in the retarding direction together with the first output shaft and the driven shaft relative to the rotating member.
Abstract:
A phaser for adjusting the timing between a camshaft and a crankshaft. The phaser consists of an outer housing having internal and external teeth and an inner housing connected to the camshaft. The outer teeth couple to the cam drive—the timing chain, timing belt or timing gears. A worm mounted on the inner housing is meshed with the internal teeth of the outer housing. The worm gear is connected to one or two drive wheels, which are rotated by contact with stationary plates. The plates are moved by electromagnetic coils to contact the drive wheel or wheels, and turn them in one direction or the other. The actuators are activated by an engine control unit. The plates can be mounted concentrically on one side of the phaser, or on opposite sides.
Abstract:
A phaser for adjusting the timing between a camshaft and a crankshaft. The phaser consists of an outer housing having internal and external teeth and an inner housing connected to the camshaft. The outer teeth couple to the cam drivenullthe timing chain, timing belt or timing gears. A worm mounted on the inner housing is meshed with the internal teeth of the outer housing. The worm gear is connected to one or two drive wheels, which are rotated by contact with stationary plates. The plates are moved by electromagnetic coils to contact the drive wheel or wheels, and turn them in one direction or the other. The actuators are activated by an engine control unit. The plates can be mounted concentrically on one side of the phaser, or on opposite sides.
Abstract:
A variable valve timing mechanism for an internal combustion engine comprising at least one rotary valve (1) having at least two ports terminating as openings (2, 3) in its periphery, a cylinder head (7) having a bore in which the rotary valve (1) rotates, and a window (6) in the bore communicating with a combustion chamber (8). The openings (2, 3) successively align with the window (6) by virtue of the rotation. The mechanism also comprises a drive mechanism (13) driving the rotary valve (1). The at least two ports (2, 3) of the rotary valve (1) are an inlet port and an exhaust port. The drive mechanism (13) varies the angular velocity of the rotary valve (1) at least within a portion of at least one engine cycle whilst maintaining an average angular velocity over the at least one engine cycle that has a fixed relation to the average angular velocity of crankshaft over the at least one cycle.
Abstract:
A relative rotation angle control mechanism of a valve timing control device comprises a radial guide provided by one of drive and driven rotation members which are rotatable about a given axis. A movable control member is guided by the radial guide in a manner to move in a radial direction with respect to the given axis. A link links the movable control member to a given portion of the other of the drive and driven members. The given portion is positioned away from the given axis in a radial direction. An intermediate rotation member is rotatable about the given axis relative to both the drive and driven rotation members. A spiral guide is provided by the intermediate rotation member to guide the movement of the movable control member, so that rotation of the intermediate rotation member relative to the radial guide induces a radial movement of the movable control member. A sliding resistance reducing structure is further arranged between the movable control member and the intermediate rotation member to reduce a sliding resistance produced when the movable control member is moved.
Abstract:
A camshaft drive system is described for a selectable two-stroke/four-stroke internal combustion engine with exhaust and intake poppet valves opened and closed by at least one camshaft. In a preferred embodiment of the system, the camshaft is connected permanently to a planetary gear set which is driven continuously by the engine crankshaft, and means are provided for setting the planetary gear set in one of two selectable stable modes to function either as a gear box or as a rigid coupling.