Abstract:
A multilayered pressure vessel (10) fabricated from at least one single ply sheet of flexible material (100) having an approximate longitudinal midline which divides the material into an inner portion (130) having an inner surface, an outer surface, an edge, a seam allowance, and a width, and an outer portion having an inner surface, an outer surface, an edge, a seam allowance, and a width. The width of the outer portion (120) is greater than the width of the inner portion (140). A primary seam (250) binds the outer portion and the inner portion to the material sheet at the midline proximate the outer portion edge and inner portion edge. The sheet (100) is wrapped into a continuous substantially 720 degree wrap to form a generally cylindrical vessel body having possible multiple fluid passageways, at the election of the user. The primary seam (250) is concealed.
Abstract:
The method for loading pressurized compressed natural gas into a storage element on a floating vessel entails introducing compressed natural gas from a source into a storage element located on the floating vessel raising the storage element pressure from about 800 psi to about 1200 psi at an ambient temperature; allowing a portion of the compressed natural gas to cool forming a liquid in the storage element; removing remaining vapor phase compressed natural gas from the storage element to a refrigeration plant, wherein the refrigeration plant is adapted to cool the vapor; removing the liquid from the storage element to the refrigeration plant; wherein the refrigeration plant is adapted to cool the liquid; mixing the cooled vapor phase with the cooled liquid phase and returning the mixture to the storage element; repeating the steps until the vapor has been cooled and is substantially a liquid.
Abstract:
A multilayered pressure vessel (10) fabricated from at least one single ply sheet of flexible material (100) having an approximate longitudinal midline which divides the material into an inner portion (130) having an inner surface, an outer surface, an edge, a seam allowance, and a width, and an outer portion having an inner surface, an outer surface, an edge, a seam allowance, and a width. The width of the outer portion (120) is greater than the width of the inner portion (140). A primary seam (250) binds the outer portion and the inner portion to the material sheet at the midline proximate the outer portion edge and inner portion edge. The sheet (100) is wrapped into a continuous substantially 720 degree wrap to form a generally cylindrical vessel body having possible multiple fluid passageways, at the election of the user. The primary seam (250) is concealed.
Abstract:
A cellular reservoir flexible pressure vessel is formed as a series of closely packed tubes fitted into a pair of opposing end caps. The end caps have individual receptacles sized and shaped to receive the tube ends that are secured with adhesive or radio frequency welding. At least one end cap has a passageway for connection of the vessel. The vessel may be formed in a variety of useful shapes and the tubes may have various internal and external cross-sections. The end caps may be filled with sintactic foam with canals leading to the passageway. Microtubes through the syntactic foam may connect the tubes to the passageway. The vessel is further strengthened by overwrapping with high-strength braiding material, hoop winding or by overlayment with high-strength fabric. The vessel is further strengthened by coating with plastic resin. Apparatus and methods for forming the cellular reservoir flexible vessels are described.
Abstract:
A cellular reservoir flexible pressure vessel is formed as a series of closely packed tubes fitted into a pair of opposing end caps. The end caps have individual receptacles sized and shaped to receive the tube ends that are secured with adhesive or radio frequency welding. At least one end cap has a passageway for connection of the vessel. The flexible pressure vessel has a pressure relief device comprising a reduction in thickness of one end cap at a predetermined location. When subjected to overpressure it fails at the predetermined location. Other pressure relief devices include: a projecting member on the vessel surface, a weakened section of the passageway, a weakening or an absence of braiding material or hoop winding at a predetermined location on the vessel surface or along the passageway, a weakening or spreading of fibers in either the reinforcing panels or the flexible blankets covering the vessel.
Abstract:
The tank for storing gas at high pressure, such as a tank for a vehicle running on gas, comprises a confinement volume accessible via coupling means and defined by a duct disposed in a spiral coil so that the substantially rectilinear main portions of the duct bear against one another. The forces exerted by the pressure of the gas on the main portions of a turn of the duct are then compensated by the forces exerted on the adjacent turns of the duct.
Abstract:
A litter for carrying a patient in a supine position, such as a stretcher or trauma board, includes a support panel and a pressure pack for providing a portable supply of medicinal gas, such as oxygen, that can be administered to a patient on the liter. The pressure pack includes a gas storage vessel formed from a plurality of polymeric hollow chamber having either en ellipsoidal or spherical shape and interconnected by a plurality of relatively narrow conduit sections disposed between consecutive ones of the chambers. The storage vessel includes a reinforcing filament wrapped around the interconnected chambers and interconnecting conduit sections to limit radial expansion of the chambers and conduit sections when filled with a fluid under pressure. The storage vessel further includes a fluid transfer control system attached to the storage vessel for controlling fluid flow into and out of the pressure vessel and a gas delivery mechanism for delivering gas from the storage vessel to a user in a breathable manner.
Abstract:
A vehicle includes a storage pack for storing gas under pressure for providing an onboard supply of the pressurized gas. The pressurized gas may be used as a medicinal gas, e.g. oxygen, on emergency medical vehicles, or the gas may be used as a fuel source for a motorized vehicle having a motor that runs on combustible gas. The gas storage pack includes a pressure vessel formed from a plurality of hollow chambers, which have either an ellipsoidal or spherical shape, interconnected by a plurality of relatively narrow conduit sections disposed between consecutive ones of the chambers. The pressure vessel includes a reinforcing filament wrapped around the interconnected chambers and interconnecting conduit sections to limit radial expansion of the chambers and conduit sections when filled with a fluid under pressure. The gas storage pack further includes a gas transfer control system attached to the pressure vessel for controlling gas flow into and out of the pressure vessel.
Abstract:
A shaped article is capable of at least one of containing and delivering a cryogenic fluid. The article has a porous structure that restricts the passage of cryogenic fluid in the liquid phase while permitting the passage of cryogenic fluid in the gaseous phase. The article may be in the form of a tube or container. The article permits a liquid cryogen to be transported to a specific site, and then cool the site by means of conduction from the cold article and convection of cold gas, the phase change of the evaporating liquid greatly enhancing the heat loss.
Abstract:
An inexpensive, compact, on-site gas storage facility for the storage of natural gas uses steel pipes affixed end to end in a serpentine arrangement. The facility has a compressor, a decompressor or a pressure reducing regulator, a steel pipe storage system, and components for containing the gas in the system, controlling the delivery of gas to the system and expelling gas from the system for use or delivery of natural gas to end users. The facility includes monitors, filters or strainers, dryers, test stations and cathodic protection systems. The gas storage facility is usable in industrial, commercial, utility and residential applications.