Abstract:
An apparatus for winding steel ribbon around a vessel inner shell having forward and rearward ends to construct a pressure vessel includes a vessel support and rotation mechanism, a vessel elevation adjusting mechanism, tracks for supporting and guiding the vessel support and rotation mechanism, a carriage having rail track engaging mechanism for traveling along the track on at least one side of the vessel inner shell, and a ribbon pulling mechanism mounted on the carriage for delivering the ribbon to the vessel inner shell under ribbon tensile loading to pre-stress the vessel. The apparatus preferably additionally includes a locking mechanism for locking the vessel support and rotation mechanism to the track, after the vessel support and rotation mechanism is positioned at forward and rearward ends of a given vessel inner shell. The vessel support and rotation mechanism preferably includes several vessel support roller sets in the form of annular members rotatably mounted on tracks. A method for winding steel ribbon around a vessel inner shell using the above described apparatus, includes the steps of mounting the vessel inner shell on the vessel support and rotation mechanism, securing an end of the ribbon to the vessel inner shell, rotating the vessel inner shell, delivering the ribbon from the ribbon pulling mechanism to the vessel inner shell for winding around the inner shell, and advancing the ribbon pulling mechanism along the track on the carriage to wind the ribbon along the inner shell in a helical path.
Abstract:
A method for the preparation of optical ferrules containing cylindrical members utilizes a guide receiving the cylindrical member, a sleeve receiving a piston therethrough, and a pin extending into the sleeve. The method also includes biasing to position the piston, using fill gates to dispense polymer into a defined cavity, and employing a containment which secures the components together. Injection molded optical fiber ferrules made according to the apparatus and process exhibit superior properties.
Abstract:
The present invention relates to a prefabricated structure providing fluid-tight and thermo-insulated walls for a heat-insulated confinement container such as a fluid-tight reservoir for storage and/or transport of a very low temperature fluid. Said structure (1) comprised of an internal flexible and fluid-tight barrier (2), a heat insulation system (4) and an external wall (3) forming support for the structure (1), is characterized in that distribution walls (53) integral with the external wall (3) are fixed to the latter particularly by means of screws or the like (35) arranged facing holes (435) drilled in an external insulation layer (43) at a distance from the joints (63) between plates (43a) forming said layer, a fluid-tight connector (80) being sealingly arranged in each of the holes (435) and joints (63). The invention applies to the construction of structures forming fluid-tight reservoirs, for example for tankers which transport cryogenic liquids such as methane tankers.
Abstract:
In a preferred embodiment, a composite pressure vessel for the containment of pressurized fluid, including: at least two opposed walls regions; and a plurality of internal fibers fixedly attached to and extending between the at least two opposed wall regions, interiorly of the pressure vessel, so as to resist the force of the pressurized fluid tending to force the at least two opposed wall regions apart.
Abstract:
Fire resistant tank apparatus is adapted for transportation and for installation above-ground to receive and dispense a liquid hydrocarbon or hydrocarbons, or the like, and includes a metallic tank assembly having a lightweight, triple hulled, wall structure, defining inner, intermediate and outer walls which are spaced apart. Thermal barrier material is located in certain space between such walls, and in such manner that there is no direct heat conducting metallic path between such walls, as for example the intermediate and outer walls. In addition, fire resistant material may be applied to the outer side or sides of the outer walls and hardened to define a relatively lightweight shell enclosing the tank assembly. The structure resists severe heat invasion in the form of radiation, convection and conduction to maintain liquid hydrocarbon in the innermost tank isolated from such invasion. Also, the structure is bullet resistant.
Abstract:
A storage device has an inner enclosure (6) and a leakproof and a rigid outer enclosure (5), which are mounted one inside the other and separated by an intermediate space (9) containing a fluid, continuous in phase at pressures other than that of the material stored, and pressure measurement equipment (16, 15) enabling the differences in the pressure of the fluid to be monitored. Advantageously, the device additionally features sampling equipment (18, 17) enabling the composition of the fluid to be monitored. The device may be buried, the outer enclosure being then placed against the cement walls (4) of a cavity, which may be a drilled well. The inner enclosure may feature a leakproof skin which is made rigid by the presence in the intermediate space of a porous and rigid filling material in which the fluid can circulate.
Abstract:
A spherical tank is supported by a vertical skirt extending from the tank equator down to a foundation. An enclosed space defined by the spherical tank, the skirt and the foundation is made pressure tight and is connected to a pressure-regulating system, thus permitting regulation of the pressure within the space.
Abstract:
A spill condition venting system for a double containment tank includes a control system for controlling, in the event of a spill or an overflow of fluid into the annulus of such double containment tank, the flow of stored fluid into and out of the annulus and for controlling vapor resulting from such spill.
Abstract:
A tank adapted to withstand the horizontal displacement forces and overturning moments which act upon the side walls thereof under earthquake conditions is disclosed. The tank includes a base and cylindrical side walls and a plurality of tendons are provided each of which is attached to the cylindrical side wall at one end and to an anchor fixedly positioned in the concrete base. Each of the tendons is stressed and the stress in the tendon acts downwardly and in some embodiments radially outwardly on the tank wall and substantially restrains the wall from horizontal displacement and protects the side walls from the stresses developed due to the overturning moment. Steel-wall and prestressed concrete wall tanks, particularly for cryogenic liquids, can be adapted according to the invention.A double-wall storage tank for cryogenic liquids is also shown wherein a plurality of stressed tendons are distributed around the inner wall and act outwardly and downwardly on the upper portion of the inner wall and wherein a second plurality of stressed tendons are attached to the upper part of the outer wall and act inwardly and downwardly thereupon.
Abstract:
An offshore submarine storage facility for highly chilled liquified gas, such as liquified natural gas, is disclosed. The facility includes an elongated, vertically oriented submerged frame. An insulated storage tank is movably mounted to the frame so as to be positionable at various depths in the water. The tank is constructed to transfer external ambient water pressure to the liquified gas without intermixture. This transferred pressure aids in maintaining the liquified state of the stored liquified gas.