Abstract:
A measurement device includes: an X-ray irradiation section; an X-ray detection section configured to detect scattered X-rays generated from an object; and an analysis section configured to analyze diffraction images obtained through photoelectric conversion of the scattered X-rays and estimate a three-dimensional shape of the object. A recessed portion is formed in a first film from an opening portion in a second film formed on the first film. The analysis section estimates a three-dimensional shape of the object on the basis of the diffraction images acquired while an irradiation angle of the X-rays with respect to the object is changed and shape data obtained by measuring the object in advance. The shape data include a film thickness of the second film, a neck diameter, and a bottom diameter.
Abstract:
A transmission type small-angle scattering device of the present invention includes a goniometer 10 including a rotation arm 11. The rotation arm 11 is freely turnable around a θ-axis extending in a horizontal direction from an origin with a vertical arrangement state of the rotation arm 11 being defined as the origin, and has a vertical arrangement structure in which an X-ray irradiation unit 20 is installed on a lower-side end portion of the rotation arm 11, and a two-dimensional X-ray detector 30 is installed on an upper-side end portion of the rotation arm 11 to form a vertical arrangement structure.
Abstract:
Methods and systems for performing measurements of semiconductor structures based on high-brightness, Soft X-Ray (SXR) illumination over a small illumination spot size with a small physical footprint are presented herein. In one aspect, the focusing optics of an SXR based metrology system project an image of the illumination source onto a specimen under measurement with a demagnification of at least 1.25. In a further aspect, an illumination beam path from the x-ray illumination source to the specimen under measurement is less than 2 meters. In another aspect, SXR based measurements are performed with x-ray radiation in the soft x-ray region (i.e., 80-3000 eV). In some embodiments, SXR based measurements are performed at grazing angles of incidence in a range from near zero degrees to 90 degrees. In some embodiments, the illumination optics project an image of an illumination source onto a specimen under measurement with a demagnification of 50, or less.
Abstract:
A system and method for measuring a sample by X-ray reflectance scatterometry. The method may include impinging an incident X-ray beam on a sample having a periodic structure to generate a scattered X-ray beam, the incident X-ray beam simultaneously providing a plurality of incident angles and a plurality of azimuthal angles; and collecting at least a portion of the scattered X-ray beam.
Abstract:
The disclosed matter provides systems and methods for encoding an assembly of three-dimensional (3D) hierarchically ordered nanoparticle architectures through chromatic bonds. Through identification of the repeating mesovoxels including chromatic bonds and voxels, the presented disclose matter can allow for encoding the 3D architectures by using symmetries of mesovoxel, enable a compression of the information amount required for encoding.
Abstract:
An X-ray scattering apparatus having a sample holder for aligning and/or orienting a sample to be analyzed by X-ray scattering, a first X-ray beam delivery system having a first X-ray source and a first monochromator being arranged upstream of the sample holder for generating and directing a first X-ray beam along a beam path, a distal X-ray detector arranged downstream of the sample holder and being movable, in a motorized way, is disclosed. The first X-ray beam delivery system is configured to focus the first X-ray beam onto a focal spot near the distal X-ray detector when placed at its largest distance from the sample holder or produce a parallel beam so that the X-ray scattering apparatus has a second X-ray beam delivery system having a second X-ray source and being configured to generate and direct a divergent second X-ray beam towards the sample holder for X-ray imaging.
Abstract:
An X-ray system includes, first and second X-ray channels (XCs), a spot sizer and a processor. The first XC is configured to: (i) direct a first X-ray beam for producing a spot on a surface of a sample, and (ii) produce a first signal responsively to a first X-ray radiation received from the surface. The spot sizer is positioned at a distance from the surface and is shaped and positioned to set the spot size by passing to the surface a portion of the first X-ray beam. The second XC is configured to: (i) direct a second X-ray beam to the surface, and (ii) produce a second signal responsively to a second X-ray radiation received from the surface, and the processor is configured to: (i) perform an analysis of the sample based on the first signal, and (ii) estimate the size of the spot based on the second signal.
Abstract:
A method for X-ray measurement includes generating and directing an X-ray beam to a sample including at least first and second layers stacked on one another, the X-ray beam incident on a sample location at which the first and second layers include respective first and second high aspect ratio (HAR) structures. X-ray scatter profiles are measured, that are emitted from the sample location in response to the X-ray beam as a function of tilt angle between the sample and the X-ray beam. A shift is estimated, between the first and second layers and a characteristic tilt of the first and second layers, based on the X-ray scatter profiles measured as a function of the tilt angle.