摘要:
The present invention is a method and apparatus for achieving high work output per unit volume in micro-robotic actuators, and in particular TiNi actuators. Such actuators are attractive as a means of powering nano-robotic movement, and are being developed for manipulation of structures at near the molecular scale. In these very small devices (one micron scale), one means of delivery of energy is by electron beams. Movement of mechanical structures a few microns in extent has been demonstrated in a scanning electron microscope. Results of these and subsequent experiments will be described, with a description of potential structures for fabricating moving a microscopic x-y stage.
摘要:
According to one aspect of the invention, a method of constructing an electronic assembly is provided. A layer of metal is formed on a backside of a semiconductor wafer having integrated formed thereon. Then, a porous layer is formed on the metal layer. A barrier layer of the porous layer at the bottom of the pores is thinned down. Then, a catalyst is deposited at the bottom of the pores. Carbon nanotubes are then grown in the pores. Another layer of metal is then formed over the porous layer and the carbon nanotubes. The semiconductor wafer is then separated into microelectronic dies. The dies are bonded to a semiconductor substrate, a heat spreader is placed on top of the die, and a semiconductor package resulting from such assembly is sealed. A thermal interface is formed on the top of the heat spreader. Then a heat sink is placed on top of the thermal interface.
摘要:
A nanomechanical device includes a nanostructure, such as a MWNT, located between two electrodes. The device switches from an OFF state to an ON state by extension of at least one inner shell of the nanostructure relative to at least one outer shell of the nanostructure upon an application of a voltage between the electrodes. If desired, the device may also switch from the ON state to the OFF state upon an application of a gate voltage to a gate electrode located adjacent to the nanostructure.
摘要:
A mounting mechanism for the probe tip of a Scanning Probe Microscope (SPM) includes a scanner supported by a stationary frame, and a kinematic mechanism supported by the scanner. The kinematic mechanism includes at least three protrusions and at least one magnet. The mounting mechanism for the probe tip also includes a chip mount having a hole, a slot and a flat surface. The chip mount, on being held by the magnet, provides an easy way to mount the probe tip without requiring any tools.
摘要:
A method for forming a microstructures is described. The method comprises: depositing a seed material on a substrate; growing a nanotube from the seed material; depositing microstructure material on the substrate to embed the nanotube in the microstructure material; and, detaching the substrate to release the microstructure. The resulting mictostructure comprises a body portion and a nanotube embedded in the body portion.
摘要:
Nanoelectromechanical switch systems (NEMSS) are provided that utilize the mechanical manipulation of nanotubes. Such NEMSS may realize the functionality of, for example, automatic switches, adjustable diodes, amplifiers, inverters, variable resistors, pulse position modulators (PPMs), and transistors. In one embodiment, a nanotube is anchored at one end to a base member and coupled to a voltage source that creates an electric charge at the tip of the nanotube's free-moving-end This free-moving end may be electrically controlled by applying an additional electric charge, having the same (repelling) or opposite (attracting) polarity as the nanotube, to a nearby charge member layer. A contact layer is located in the proximity of the free-moving end such that when a particular electric charge is provided to the nanotube (or charge member layer), the nanotube electrically couples with the contact layer.
摘要:
According to one aspect of the invention, a method of constructing an electronic assembly is provided. A layer of metal is formed on a backside of a semiconductor wafer having integrated formed thereon. Then, a porous layer is formed on the metal layer. A barrier layer of the porous layer at the bottom of the pores is thinned down. Then, a catalyst is deposited at the bottom of the pores. Carbon nanotubes are then grown in the pores. Another layer of metal is then formed over the porous layer and the carbon nanotubes. The semiconductor wafer is then separated into microelectronic dies. The dies are bonded to a semiconductor substrate, a heat spreader is placed on top of the die, and a semiconductor package resulting from such assembly is sealed. A thermal interface is formed on the top of the heat spreader. Then a heat sink is placed on top of the thermal interface.
摘要:
A scanning probe microscope uses two different scanners (also called nullscanning stagesnull) that are completely detached each from the other, and are physically separated by a stationary frame. One scanner (called nullx-y scannernull) scans a sample in a plane (also called nullx-y planenull), while the other scanner (called nullz scannernull) scans a probe tip (which is supported at a free end of a cantilever) in a direction (also called nullz directionnull) perpendicular to the plane. Detachment of the two scanners from one another eliminates crosstalk.
摘要:
An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/N2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.
摘要:
A sub-micron probe apparatus to be added to an existing probe station. In one embodiment, the probe apparatus includes a course positioning unit to be optionally mounted or added to an existing probe station platform. A fine positioning unit is attached to an arm attached to the course positioning unit. A cantilever having a tip is attached to a support structure attached to the fine positioning unit. The course and fine positioning units are used to place the cantilever and tip over a surface of a device under test (DUT). Motion of the cantilever is detected with a motion sensor. An image of the surface of the DUT may be obtained. In addition, an electrical signal carried in an electrical trace on or near the surface of the DUT can be detected. An electrical signal may also be supplied to the electrical trace on or near the surface of the DUT. The field of vision of an optical imager used to image the DUT at the probe area is not obstructed by the probe apparatus.