Abstract:
Disclosed is a method for controlling bit rates in consideration of wireless channel environment by an apparatus that transmits and receives moving picture encoding data via a wireless network. The apparatus for transmitting/receiving data through a wireless communication network connected to the apparatus including a channel state analyzing unit for analyzing a wireless channel environment, an encoding controller for generating control information containing information about a quantization parameter, skip or non-skip of frames indication, frame type indication, and use or non-use of an Error Resilient Tool (ERT) indication, in consideration of an analyzation result received from the channel state analyzing unit, a moving picture encoding unit for encoding incoming moving picture data, based on the control information received from the encoding controller; and a data transmitting/receiving unit for transferring the encoded moving picture data through the wireless channel to an exterior.
Abstract:
Provided is a charge trapping nonvolatile memory device. The charge trapping nonvolatile memory device includes: an active pattern and a gate electrode, spaced apart from each other; a charge storage layer between the active pattern and the gate electrode; a tunnel insulation layer between the active pattern and the charge storage layer; and a blocking insulation layer disposed between the charge storage layer and the gate electrode and including a high-k layer with a higher dielectric constant than the tunnel insulation layer and a barrier insulation layer with a higher band gap than the high-k layer. A physical thickness of the high-k layer is less than or identical to that of the barrier insulation layer.
Abstract:
A semiconductor memory device has a memory cell region and a peripheral region. The device includes low voltage transistors at the peripheral region having gate insulation films with different thicknesses. For example, a gate insulation film of a low voltage transistor used in an input/output circuit of the memory device may be thinner than the gate insulation film of a low voltage transistor used in a core circuit for the memory device. Since low voltage transistors used at an input/output circuit are formed to be different from low voltage transistors used at a core circuit or a high voltage pump circuit, high speed operation and low power consumption characteristics of a non-volatile memory device may be.
Abstract:
A non-volatile memory device includes gate structures, an insulation layer pattern, and an isolation structure. Multiple gate structures being spaced apart from each other in a first direction are formed on a substrate. Ones of the gate structures extend in a second direction that is substantially perpendicular to the first direction. The substrate includes active regions and field regions alternately and repeatedly formed in the second direction. The insulation layer pattern is formed between the gate structures and has a second air gap therein. Each of the isolation structures extending in the first direction and having a first air gap between the gate structures, the insulation layer pattern, and the isolation structure is formed on the substrate in each field region.
Abstract:
A roof airbag apparatus for a vehicle may include an inflator generating pressurized gas, an airbag cushion provided between a roof of a vehicle body and a head-lining to expand downwards towards a passenger who may be sitting on a seat when the pressurized gas may be supplied to the airbag cushion from the inflator, and a support panel provided on a lower portion of the airbag cushion to contact and screen the passenger's face when the airbag cushion expands.
Abstract:
A method and packaging machine for preparing rapidly disintegrating formulations for oral administration are disclosed. The present invention is characterized in that a powdery mixture including a pharmaceutically active ingredient and a sugar or a sugar alcohol powder is filled into a packaging material and, thereafter, the mixture, filled in the packaging material, is heated. The present invention can simply and economically prepare an oral formulation which undergoes rapid disintegration in the oral cavity and provides for high-quality administration to patients.
Abstract:
A non-volatile memory device includes an array of flash memory cells therein and a voltage generator. The voltage generator is configured to generate a program voltage (Vpgm), a pass voltage (Vpass), a blocking voltage (Vblock) and a decoupling voltage (Vdcp) during a flash memory programming operation. The blocking voltage is generated at a level that inhibits inadvertent programming of an unselected memory cell(s). This voltage level of the blocking voltage is set so that Vdcp
Abstract:
A method of fabricating a floating trap type nonvolatile memory device includes forming a cell gate insulating layer on a semiconductor substrate, the cell gate insulating layer being comprised of a lower insulating layer, a charge storage layer and an upper insulating layer sequentially stacked; thermally annealing the cell gate insulating Layer at a temperature of approximately 810° C. to approximately 1370° C.; and forming a gate electrode on the thermally annealed cell gate insulating layer.
Abstract:
Integrated circuit flash memory devices, such as NAND flash memory devices, include an array of regular flash memory cells, an array of dummy flash memory cells and an erase controller. The erase controller is configured to concurrently apply a different predetermined bias voltage to the dummy flash memory cells than to the regular flash memory cells during an erase operation of the integrated circuit flash memory device. Related methods are also described.
Abstract:
Methods of operating a charge trap nonvolatile memory device include operations to erase a first string of nonvolatile memory cells by selectively erasing even-numbered nonvolatile memory cells in the first string and then selectively erasing the odd-numbered nonvolatile memory cells in the first string, which may be interleaved with the even-numbered nonvolatile memory cells. This operation to selectively erase the even-numbered nonvolatile memory cells may include erasing the even-numbered nonvolatile memory cells while simultaneously biasing the odd-numbered nonvolatile memory cells in a blocking condition that inhibits erasure of the odd-numbered nonvolatile memory cells. The operation to selectively erase the odd-numbered nonvolatile memory cells may include erasing the odd-numbered nonvolatile memory cells while simultaneously biasing the even-numbered nonvolatile memory cells in a blocking condition that inhibits erasure of the even-numbered nonvolatile memory cells.