Abstract:
A processing platform integrates ETL (extract, transform, and load), real time stream processing, and “big data” data stores into a high performance analytic system that runs in a public or private cloud. The platform performs real time pre-storage enrichment of data records to form a single comprehensive record usable for analytics, searching and alerting. The platform further supports sharing of components and plug-ins and performs automatic scaling of resources based on real time resource monitoring and analysis.
Abstract:
A process, including a mobile application, for tracking the drayage driver and vehicle movement and reporting where the driver is and how much time he has been at a location, as well as details about the driver and cargo is described. This process can correlate driver and vehicle identification and allow for the transfer of bill of lading or hazardous material restrictions. Data captured is easily be made available in advance to the port terminals (which must have container ready for pick up); available for the shipping company (which can see cargo en-route—regardless of which company the driver works for); and available for the destination warehouse (which must receive and process the shipment). The association of cargo owners, shippers, terminal yards, drayage companies, drivers, and drayage job assignments can further be linked.
Abstract:
A processing platform integrates ETL (extract, transform, and load), real time stream processing, and “big data” data stores into a high performance analytic system that runs in a public or private cloud. The platform performs real time pre-storage enrichment of data records to form a single comprehensive record usable for analytics, searching and alerting. The platform further supports sharing of components and plug-ins and performs automatic scaling of resources based on real time resource monitoring and analysis.
Abstract:
A system and associated method for isolating intended radiation signals for determining target characteristics includes multiple detectors for detecting radiation signals having varying energies, delay modules for delaying the detected radiation signals and a discriminator associated with the multiple detectors for determining if detected radiation signals include unintended radiation signals, e.g., x-rays, and provided blanking signals to a switch in order to effectively remove the unintended radiation signals from the data that is presented to the processor for determining target characteristics.
Abstract:
A Volatile Organic Compound (VOC) mitigation system employs a combination of technologies coupling VOC laden exhaust with a reciprocating engine and generator system (Combined Heat & Power (CHP) System) with heat recovery to destroy the VOC emissions and generate electric power and useful thermal energy.
Abstract:
A process for selecting an optimal individual user solution including an optimal rate allocation and associated price for a predetermined bandwidth of cellular network resources includes application of an iterative process and selection from multiple proposed user solutions. The inputs to the iterative process include at least an initial user bid, an initial network rate allocation, a generated user utility function and the cost data. The user utility function includes multiple application user functions. Optimal solution selection includes comparing each multiple proposed user rate allocation with the initial network rate allocation for the user and selecting the closest multiple proposed user rate allocation to the initial network rate allocation. The process may be applied to aggregated cellular carrier scenarios.
Abstract:
A separation module operates to fractionate or separate an analyte into fractions according to pI, i.e., pI bands, utilizing capillary isoelectric focusing (“CIEF”) within a first microchannel. The fractions are stacked to form plugs, the number of which is determined by a number of parallel second microchannels integrally connected to the first microchannel, into which the fractions are directed according to the buffer characteristics found in each of the individual microchannels. Within the microchannels the plugs are separated into proteins according to a different chemical property, i.e., “m/z,” utilizing capillary electrophoresis (“CE”).
Abstract:
Wave energy conversion systems are provided utilizing a mass of water entrained in a collapsible water mass enclosure that is suspended beneath a float (e.g., a vehicle, buoy, platform, etc.) to provide an inertial force in opposition to the rising heave-induced acceleration of the float. The water mass enclosure is communication with a generator, such as by tethering one end of a tethering means to the generator and the other to the enclosure. The enclosure may be placed in communication with an intermediary hydraulic system, which is also in communication with the generator. In certain embodiments, the system will include a reel system for deploying and retrieving the water masse enclosure.
Abstract:
A separation module operates to fractionate or separate an analyte into fractions according to pI, i.e., pI bands, utilizing capillary isoelectric focusing (“CIEF”) within a first microchannel. The fractions are stacked to form plugs, the number of which is determined by a number of parallel second microchannels integrally connected to the first microchannel, into which the fractions are directed according to the buffer characteristics found in each of the individual microchannels. Within the microchannels the plugs are separated into proteins according to a different chemical property, i.e., “m/z,” utilizing capillary electrophoresis (“CE”).
Abstract:
The methods and systems described herein centralize simulation resources and effectively delivering training and simulation services to a broad set of distributed users at both the enterprise and operational levels. The cloud-based delivery of simulation applications described herein enables on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. In exemplary systems, users may provision computing capabilities, such as server time and network storage, as needed, automatically without requiring human interaction.