Abstract:
A thin image sensor package includes an image sensor having an active area which is responsive to radiation. The image sensor is mounted to a substrate which is transparent to the radiation. The image sensor is mounted such that the active area of the image sensor faces the substrate. Of importance, the substrate serves a dual function. In particular, the substrate is the window which covers the active area of the image sensor. Further, the substrate is the platform upon which the image sensor package is fabricated. As a result, the image sensor package is thin, lightweight and inexpensive to manufacture.
Abstract:
A toilet bowl lid actuated linkage toilet flushing system wherein a conventional toilet-flushing flapper is actuated by a drain pull chain controlled relative to the positioning of the toilet bowl lid to the toilet. The toilet bowl lid must be moved from an upward position to a downward position to flush the toilet, which a magnetic plastic ribbon actuator mechanism is provided for completion of the toilet flush even when the toilet bowl lid remains in the downward position. Movement of the lid actuates a magnetic flush pull of a plastic ribbon that is linked to a drain pull chain connected to the flapper. An alternate version of the toilet bowl lid actuated linkage toilet flushing system is compatible with flushometer toilets and enables an opening and closing of a valve controlling outflow of a pressurized water source.
Abstract:
The present invention relates to methods and systems for removing polar molecule contaminants from a refinery stream in connection with the processing of hydrocarbon fluids, chemicals, whole crude oils, blends and fractions in refineries and chemical plants that include adding high surface energy and/or high surface area nanoparticle compounds to a refinery stream to remove the polar molecule contaminants.
Abstract:
A method is disclosed for instructing a user interface (UI) in communication with a first of vision processor (VP) to establish communication with a second (VP). The invention is useful in a machine vision system having a plurality of VPs and at least one UI. The method includes the steps of providing each VP with a link function for establishing communication between a VP and a UI; and activating the link function so as to issue instructions to the UI to establish communication with another VP. The link function enables local dynamic display of a remote VP on the UI, and a dynamic connection that provides a continually updated display representing a current state of the VP connected to the UI. An operator may observe results and alter parameters on any of the VPs in the system without having to first understand the architecture of the machine vision system.
Abstract:
A digital still camera module includes an image sensor package (2) and a lens barrel (30) mounted on the image sensor package. The image sensor package includes a substrate (20), an image sensor chip (22), and a cover (28). The substrate defines a receiving chamber (203) therein. The image sensor chip mounted in the receiving chamber of the substrate. The cover, which is transparent and has a smaller profile than that of the substrate, is secured to the top portion of the substrate thereby sealing the receiving chamber. The top portion of the substrate has an uncovered section (29) at a periphery of the cover. The lens barrel includes at least one lens (31) received therein. The lens barrel is securely attached to the uncovered section of the top portion of the substrate.
Abstract:
An image sensor package includes a molding having a locking feature. The package further includes a snap lid having a tab, where the tab is attached to the locking feature of the molding. To form the image sensor package, a window is placed in a pocket of the molding. The snap lid is secured in place. Once secured, the snap lid presses against a peripheral region of an exterior surface of the window. The window is sandwiched between the molding and the snap lid and held in place.
Abstract:
A digital camera module (100) includes a holder, an image sensor chip package (30), a number of conductive elements (24) and a circuit board (40). The holder defines a receiving portion. The holder is mounted on the image sensor chip package. The image sensor chip package has a number of outer pads. The outer pads are positioned in the receiving portion of the holder. The conductive elements are received in the receiving portion. One end of each of the conductive elements is connected to the inner pads, the other end of each of the conductive elements is connected to the circuit board.
Abstract:
An image sensor package includes an image sensor, a window, and a molding, where the molding includes a lens holder extension portion extending upwards from the window. The lens holder extension portion includes a female threaded aperture extending from the window such that the window is exposed through the aperture. A lens is supported in a threaded lens support. The threaded lens support is threaded into the aperture of the lens holder extension portion. The lens is readily adjusted relative to the image sensor by rotating the lens support.
Abstract:
An image sensor package method includes the steps of first, providing a carrier (30), which includes a base (24) and a leadframe (320). The base has a cavity therein and the leadframe includes a number of conductive pieces; Second, mounting an image sensor chip on the base and received in the cavity, the image sensor having a photosensitive area. Third, providing a plurality of wires, each electrically connects the image sensor chip and a corresponding one of the conductive pieces of the carrier. Fourth, applying an adhesive means around the image sensor chip that at least partially covers all the wires. Finally, mounting a transparent cover on the carrier, where an adhesive means fixes the cover in place.
Abstract:
A digital camera module includes a barrel (10), a seat (20) and an image sensor chip package (30) in accordance with a preferred embodiment is shown. The image sensor chip package includes a carrier (32), a chip (34), a number of bonding wires (36) and a cover (38). The carrier includes a base (24). The chip is mounted on the base and has an active area. The second conductive means electronically connects the chip and the conductive means. An adhesive means is applied around the active area of the chip. The transparent cover is mounted to the base of the carrier. The cover adheres to the carrier with the adhesive means and defines a sealing space (37) for sealing the active area of the chip therein. The active area of the chip is sufficiently protected from pollution by the small volume of the sealing space.