Abstract:
According to the present disclosure, a train comprising one or more locomotives coupled to one or more tenders, which contain at least one of an exhaust after-treatment or a waste heat recovery system and optionally one or more other locomotive subsystems, such as dynamic braking, energy storage, driven wheels, and fuel storage, is provided. Accordingly, the present disclosure may have one or more of the following advantages: a tender to house an exhaust after-treatment system thereby easing space constraints on the locomotive power traction car. Additionally, said tender may include a large fuel tank, waste heat recovery system, and energy storage, thereby providing the means to substantially decrease fuel consumption or increase power, both with the option of switching to a different fuel source.
Abstract:
An improved Internet File Safety Information Center (IFSIC) is disclosed. The improved IFSIC allows an Internet user to look up the authenticity and safety information about a file or group of files by computing a hash value from the file or group of files and sending the hash value to a central server on the Internet to retrieve such information. A user identifier and other information can be sent to the central server along with the hash value. The improved IFSIC can be supported by targeted advertising, can provide file update information, can provide a better filter for files attached to email messages, and can be used to ensure the integrity of operating systems and installed programs.
Abstract:
A heat exchanger includes: a housing; a working fluid inlet and a working fluid outlet in the housing through which a working fluid enters and exits the housing, respectively, wherein a working fluid flow path connects the working fluid inlet and the working fluid outlet; and a heat transfer medium inlet and a heat transfer medium outlet in the housing through which a heat transfer medium enters and exits the housing, respectively; wherein a heat transfer medium flow path connects the heat transfer medium inlet and the heat transfer medium outlet; further wherein the heat transfer medium flow path includes at least two distinct zones of operation including a radiation dominant zone and a conduction dominant zone.
Abstract:
A gauge of an instrument cluster includes a glow hub. The gauge includes a dial and a pointer including a hub portion rotatably mounted in the instrument cluster and movable to a plurality of positions. A light source is disposed in the gauge and adapted to direct light in a first direction through a translucent portion of the hub. A first reflecting surface portion of the hub is adapted to receive light directed from the light source and adapted direct light in a second direction. A second reflecting surface portion of the hub is adapted to receive light directed from the first reflecting surface portion and adapted to direct light in a third direction.
Abstract:
Engine correction inputs to control oscillation in an engine output in a transition between 2-stroke and 4-stroke engine cycle modes of an HCCI engine are determined as follows: for each mode, valve timings which modify the engine output the most upon switching are determined, and a linear engine system model is defined at least partially based on the determined valve timings, which model provides mappings relating initial conditions of the engine and the engine correction inputs to outputs of the engine; initial conditions of the engine corresponding to a switching point for switching between the two modes are determined; desired engine output conditions upon switching between the two modes are specified; and the engine correction inputs are determined by using the determined initial conditions, the desired engine output conditions, and the linear engine system model corresponding to the engine cycle mode in effect upon switching.
Abstract:
According to one aspect of the present invention, a liquid reductant tank for supplying liquid reductant to a selective catalytic reduction system is disclosed. The tank includes a tank cavity for holding a liquid reductant and being at least partially defined by one or more side walls; a liquid reductant supply line at least partially situated within the tank cavity and for communicating liquid reductant from the tank cavity to outside of the tank cavity; and a heating element situated at least partially within the liquid reductant supply line and for thawing frozen reductant situated within the supply line during cold start conditions to obtain liquid reductant for use in a selective catalytic reduction system.
Abstract:
Engine correction inputs to control oscillation in an engine output in a transition between 2-stroke and 4-stroke engine cycle modes of an HCCI engine are determined as follows: for each mode, valve timings which modify the engine output the most upon switching are determined, and a linear engine system model is defined at least partially based on the determined valve timings, which model provides mappings relating initial conditions of the engine and the engine correction inputs to outputs of the engine; initial conditions of the engine corresponding to a switching point for switching between the two modes are determined; desired engine output conditions upon switching between the two modes are specified; and the engine correction inputs are determined by using the determined initial conditions, the desired engine output conditions, and the linear engine system model corresponding to the engine cycle mode in effect upon switching.
Abstract:
A gauge can include a face plate and an indication area disposed about a gauge center. The indication area can have a shape that can be defined by a bottom boundary, a top boundary, and first and second ends joining respective ends of the top and bottom boundaries. The top and bottom boundaries can be spaced apart from the gauge center by first and second radial distances. The indication area can be angled rearward relative to the face plate with the top boundary being spaced rearward from the face plate. A plurality of indicia can be disposed on the face plate. The gauge can further include a laser system disposed behind a rear side of the face plate and arranged to rotate and reflect a laser beam to a position adjacent or relative to a specific one of the plurality of indicia based on a signal output from a sensor.
Abstract:
A gauge of an instrument cluster includes a glow hub. The gauge includes a dial and a pointer including a hub portion rotatably mounted in the instrument cluster and movable to a plurality of positions. A light source is disposed in the gauge and adapted to direct light in a first direction through a translucent portion of the hub. A first reflecting surface portion of the hub is adapted to receive light directed from the light source and adapted direct light in a second direction. A second reflecting surface portion of the hub is adapted to receive light directed from the first reflecting surface portion and adapted to direct light in a third direction.
Abstract:
A method of fabricating an electronic entity includes the steps of: forming at least part of the entity by hardening a material (28) in a mold, and (26); personalizing the entity while in the mould (26). A corresponding device is also described.