Abstract:
Disclosed herein are example embodiments for base station multi-vehicle coordination. For certain example embodiments, at least one machine, such as a base station, may: (i) effectuate one or more communications with at least a first UFV and a second UFV; or (ii) transmit to a first UFV at least one command based at least partially on one or more communications with at least a first UFV and a second UFV. However, claimed subject matter is not limited to any particular described embodiments, implementations, examples, or so forth.
Abstract:
Computationally implemented methods and systems include obtaining visual data of an actual view of a scene from a real environment, determining whether activity-inferring data that infers at least initial occurrence of one or more user activities associated with the scene from the real environment have at least been acquired, and presenting, in response at least in part to determining that the activity-inferring data have at least been acquired, an augmented view of the scene from the real environment, the augmented view including one or more augmentations that have been included into the augmented view based, at least in part, on the activity-inferring data. In addition to the foregoing, other aspects are described in the claims, drawings, and text.
Abstract:
An embodiment of a device includes an image-capture sensor, a determiner, and a notifier. The image-capture sensor is configured to be located on a subject having a body portion and to capture data representative of an image of an object. The determiner is configured to determine, in response to the data, whether the body portion may contact the object. The notifier is configured to warn, or otherwise notify, the subject in response to the determiner determining that the body portion may contact the object. Such a device (e.g., attached to, or part of, a shoe) may be useful to warn a subject of a potential collision between an object (e.g., stairs, furniture, door jamb, curb, toy) and a body part (e.g., foot, toes) in which the subject has lost feeling, the ability to feel pain, or proprioception. And such a warning may help the subject to avoid inadvertently and repeatedly injuring the body part.
Abstract:
A method substantially as shown and described in the detailed description and/or drawings and/or elsewhere herein. A device substantially as shown and described in the detailed description and/or drawings and/or elsewhere herein.
Abstract:
Structures and protocols are presented for configuring an unmanned aerial device to perform a task, alone or in combination with other entities, or for using data resulting from such a configuration or performance.
Abstract:
A computationally implemented system and method that is designed to, but is not limited to: obtain information at least in part regarding one or more first aspects of one or more intermediate electronic communication devices for serving as one or more nodes of one or more standby point-to-point communication networks upon activation thereof for use by an origination electronic communication device to communicate at least in part with a destination electronic communication device, the one or more intermediate electronic communication devices having one or more second aspects as one or more mobile electronic communication devices. In addition to the foregoing, other method aspects are described in the claims, drawings, and text forming a part of the present disclosure.
Abstract:
Computationally implemented methods and systems include receiving one or more signals through a directional antenna of a wearable computing device, the one or more signals having been transmitted by one or more electronic devices; determining that the one or more electronic devices are within a spatial pod surrounding the wearable computing device based, at least in part, on the one or more signals received by the wearable computing device; and obtaining at least access to one or more functionalities from the one or more electronic devices that were determined to be within the spatial pod of the wearable computing device. In addition to the foregoing, other aspects are described in the claims, drawings, and text.
Abstract:
Computationally implemented methods and systems include detecting presence of a plurality of functional devices within the communication range of a wearable computing device; and selecting, from the plurality of functional devices, one or more functional devices for providing to the wearable computing device one or more functionalities. In addition to the foregoing, other aspects are described in the claims, drawings, and text.
Abstract:
Computationally implemented methods and systems include facilitating a head wearable computing device to receive one or more solicitations via one or more solicitation signals that solicit to provide to a limb wearable computing device gesture indicative data that is indicative of one or more user gestures, the head wearable computing device being designed to be worn on a head of a user and the limb wearable computing device being designed to be worn around a limb of a user; and directing the head wearable computing device to transmit to the limb wearable computing device the gesture indicative data via one or more low-power gesture indicative data signals, the limb wearable computing device being within communication range of the head wearable computing device. In addition to the foregoing, other aspects are described in the claims, drawings, and text.
Abstract:
Methods, apparatuses, computer program products, devices and systems are described that carry out receiving level-two encrypted data and at least one associated hash; storing the level-two encrypted data and at least one associated hash; and transmitting the level-two encrypted data and at least one associated hash in response to a request for at least one of the level-two encrypted data or the at least one associated hash.