摘要:
A two-transistor non-volatile memory cell is formed in a semiconductor body. A memory-transistor well is disposed within the semiconductor body. A switch-transistor well is disposed within the semiconductor body and is electrically isolated from the memory transistor well. A memory transistor including spaced-apart source and drain regions is formed within the memory-transistor well. A switch transistor including spaced-apart source and drain regions is formed within the switch-transistor well region. A floating gate is insulated from and self aligned with the source and drain regions of the memory transistor and switch transistor. A control gate is disposed above and aligned to the floating gate and with the source and drain regions of the memory transistor and the switch transistor.
摘要:
There is disclosed medical apparatus of the type for use in surgery such as transanal endoscopic microsurgery, as well as methods of providing access to, inspecting and enabling surgery within a body passage. In one embodiment of the invention, medical apparatus in the form of a rectal expander (10) is disclosed, the expander (10) being adapted for location at least partly within a body passage such as the rectum (12) of a patient (14), the expander (10) having a leading end (18) and an access area in the form of an opening (20) for access from the expander (10) into the rectum (12), at least part of the opening (20) being spaced from the leading end (18), and the expander (10) being controllably movable between collapse and expansion positions, for expanding the rectum (12).
摘要:
A method, system, and circuit for performing a memory related operation are disclosed. An operating voltage is applied to a bitline and a neighboring bitline is precharged. The precharge voltage has a magnitude less than the operating voltage. Both voltages ramp up at like or different rates. The precharge voltage can reach its effective magnitude prior to or with the operating voltage reaching its effective value.
摘要:
A method for performing ATPG (automatic test pattern generation) and fault simulation in a scan-based integrated circuit, based on a selected clock order in a selected capture operation, in a selected scan-test mode or a selected self-test mode. The method comprises compiling 704 the RTL (register-transfer level) or Gate-Level HDL (hardware description language) code 701 based on the Input Constraints 702 and a Foundry Library 703, into a Sequential Circuit Model 705. The Sequential Circuit Model 705 is then transformed 706 into an equivalent Combinational Circuit Model 707 for performing Forward and/or Backward Clock Analysis 708 to determine the driving and observing clocks for all inputs and outputs of all combinational logic gates in the Combinational Circuit Model 707. The analysis results are used for Uncontrollable/Unobservable Labeling 709 of selected inputs and outputs of the combinational logic gates. Finally, ATPG and/or Fault Simulation 710 are performed according to the Uncontrollable/Unobservable Labeling 709 to generate the HDL Test Benches and ATE Test Programs 711.
摘要:
A scanning electron microscope is disclosed. The primary electron beam is radiated on a reticle (specimen), and an observation image of the reticle is obtained using the electrons secondarily released. The microscope comprises a lamp for radiating the vacuum ultraviolet light having the wavelength of not more than 172 nm on the reticle in the atmosphere, a radiation chamber for hermetically sealing the reticle so that the vacuum ultraviolet light can be radiated on the reticle, and a specimen holder for holding the reticle in the radiation chamber and capable of adjusting the distance between the lamp and the reticle.
摘要:
According to one exemplary embodiment, a method for fabricating a floating gate memory cell on a substrate comprises a step of forming a first spacer adjacent to a source sidewall of a stacked gate structure, where the stacked gate structure is situated over a channel region in the substrate. The method further comprises forming a high energy implant doped region adjacent to the first spacer in a source region of the substrate. The method further comprises forming a recess in the source region, where a sidewall of the recess is situated adjacent to a source of the floating gate memory cell, and where forming the recess comprises removing the first spacer. The method further comprises forming a second spacer adjacent to the source sidewall of the stacked gate structure, where the second spacer extends to a bottom of the recess, and where the second spacer comprises plasma-grown oxide.
摘要:
A broadcaster, system, and method for reducing test data volume and test application time in an ATE (automatic test equipment) in a scan-based integrated circuit. The scan-based integrated circuit contains multiple scan chains, each scan chain comprising multiple scan cells coupled in series. The broadcaster is a combinational logic network coupled to an optional virtual scan controller and an optional scan connector. The virtual scan controller controls the operation of the broadcaster. The system transmits virtual scan patterns stored in the ATE and generates broadcast scan patterns through the broadcaster for testing manufacturing faults in the scan-based integrated circuit. The number of scan chains that can be supported by the ATE is significantly increased. Methods are further proposed to reorder scan cells in selected scan chains, to generate the broadcast scan patterns and virtual scan patterns, and to synthesize the broadcaster and a compactor in the scan-based integrated circuit. The scan architecture used can also be random access scan based, where the integrated circuit comprises an array of random access scan (RAS) cells that are randomly and uniquely addressable. In random access scan, test patterns can be applied by selectively updating RAS cells and test responses can be observed through a direct read-out process. Eliminating the shifting process inherent in serial scan, random access scan produces much lower test power dissipation than serial scan.
摘要:
An exemplary sensing circuit comprises a first transistor connected to a first node, where a target memory cell has a drain capable of being connected to the first node through a selection circuit during a read operation involving the target memory cell. The sensing circuit further comprises a decouple circuit which is connected to the first transistor. The decouple circuit includes a second transistor having a gate coupled to a gate of the first transistor. The decouple circuit further has a decouple coefficient (N) greater than 1. The drain of the second transistor is connected at a second node to a reference voltage through a bias resistor. With the arrangement, the drain of the second transistor generates a sense amp input voltage at the second node such that the sense amp input voltage is decoupled from the first node.
摘要:
A method for fabricating a flash memory device by determining the active region width (10) of a semiconductor device (27) using a measuring technique for the source drain overdrive current elements (31, 32, 33) having different active region widths and using that difference to establish the difference between the active region width of the devices (31, 32, 33) and the drawn width and using the difference to establish the actual width (10) from drawn width in future devices, and a device thereby fabricated.
摘要:
A memory device with homogeneous oxynitride tunneling dielectric. Specifically, the present invention describes a flash memory cell that includes a tunnel oxide dielectric layer including homogeneous oxynitride. The tunnel oxide dielectric layer separates a floating gate from a channel region that is formed between a source region and a drain region in a substrate. The flash memory cell further includes a dielectric layer that separates a control gate from the floating gate. In one case, the homogenous oxynitride is a defect free silicon nitride. The homogeneity of the oxynitride is due to the uniform distribution of nitride within the tunnel oxide dielectric layer. Further, the use of the homogeneous oxynitride can increase the dielectric constant and lower the barrier height of the tunnel oxide dielectric layer for increased performance. Also, the homogenous oxynitride supports source-side channel hot hole erasing in the flash memory cell.