Abstract:
A calibration circuit includes at least two compensation circuits and a comparator. The at least two compensation circuits are coupled to an input signal for outputting at least a first compensation signal and a second compensation signal respectively. The comparator is coupled to the first compensation signal and the second compensation signal for outputting a calibration signal, where the calibration signal is used for determining an oscillation frequency of a crystal oscillator to achieve a purpose of frequency compensation with a temperature.
Abstract:
A compound semiconductor device is provided, including a gallium arsenide (GaAs) substrate having a first protrusion portion and a second protrusion portion, wherein the first protrusion portion is formed over a first portion of the GaAs substrate and the second protrusion is formed over a second portion of the GaAs substrate. A first element is disposed over the first protrusion portion, and a second element is disposed over the second protrusion portion.
Abstract:
A frequency modulation receiver is provided. The frequency modulation receiver includes an automatic frequency controller and a signal detector. The automatic frequency controller receives a demodulated frequency modulation signal demodulated from a radio frequency signal and outputs a control voltage to control an oscillation frequency of a local oscillator. The signal detector coupled to the automatic frequency controller receives the control voltage and determines whether the radio frequency signal is a frequency modulation signal according to the control voltage and a predetermined voltage range.
Abstract:
A power detector circuit for measuring output power of an amplifier circuit includes a mirror amplification stage having mirror circuit components substantially similar and corresponding to original circuit components of an amplification stage of the amplifier circuit, and a power sensor circuit coupled to an output node of the mirror amplification stage.
Abstract:
A pizeoresistive type Z-axis accelerometer is provided, including a substrate; a plurality of anchors formed over the substrate; a plurality of cantilever beams, wherein the cantilever beams include a piezoresistive material; and a proof mass, wherein the proof mass is suspended over the substrate by respectively connecting the proof mass with the anchors, and the accelerometer senses a movement of the proof mass by the piezoresistive material.
Abstract:
An asynchronous FIFO interface having a readout clock asynchronous with a write clock is provided. The asynchronous FIFO interface includes a FIFO buffer, a clock controller, a reference source and a signal source. The FIFO buffer receives a digital signal from an ADC according to the write clock and outputs a digital signal to a processor according to the readout clock. The clock controller outputs a clock control signal according to the amount of data stored in the FIFO buffer. The reference source provides an oscillation frequency. The signal source divides the oscillation frequency by a first integer divisor to generate a reference frequency, divides the readout clock by a second integer divisor to generate an input frequency, and outputs a control signal by comparing the reference frequency with the input frequency.
Abstract:
A communication system includes a time-to-digital converter, a digital low-pass filter, and a digital signal processor. The time-to-digital converter receives an in-phase signal of a frequency-shift keying signal and to generate a digital signal according to the in-phase signal. The digital low-pass filter receives the digital signal and to generate a filtered signal including N continuous words according to the digital signal. The digital signal processor divides up the N continuous words into N/2 word sets in order, wherein each of the N/2 word sets includes a first word and a second word, and if a difference between the first word and the second word meets a predetermined condition, the digital signal processor generates an output data and an output clock according to all the first words and the second words that have difference which meets the predetermined condition.
Abstract:
A phase lock loop (PLL) featuring automatic stabilization is provided, in which a first charge pump is coupled to a driving control signal to generate a first current, a filter with a zero-point path and the first charge pump are coupled at a first node, and a current adjustment circuit adjusts a current on the first node according to a voltage difference in the zero-point path.
Abstract:
A circuit device includes an option pad, a first power source pad, and a first ground pad, wherein the option pad, the first power source pad, and the first ground pad are formed over various portions of a top surface of the circuit device, and a function of the circuit device is determined by coupling the option pad with one of the first power source pad and the first ground pad through a wire bond.
Abstract:
An oscillator circuit having a source of an oscillating signal, a tank circuit including an inductor and a capacitor, and a discretely switchable capacitance module configured to control an amount of capacitance in the oscillator circuit. The discretely switchable capacitance module includes, in one embodiment, a capacitor coupled between a first node and a second node, a switch, having a control node, coupled between the second node and a third node; and a DC feed circuit, having a first end coupled to the second node and a second end configured to receive a first or second control signal. The control node of the switch is tied to a predetermined bias voltage. When the first control signal is applied, the capacitor is coupled between the first node and the third node via the switch such that the capacitor is coupled in parallel with the capacitor of the tank circuit, and when the second control signal is applied the capacitor is decoupled from the tank circuit.