Abstract:
A large volume natural gas storage tank comprises rigid tubular walls having closed tubular cross-sections that are interconnected at opposing ends with two other rigid tubular walls such that interiors of the rigid tubular walls define an interior fluid storage chamber. The storage tank also includes bulkheads positioned in the interior fluid storage chamber across intermediate segments of the rigid tubular walls and closure plates connected between exterior surfaces of successive interconnected rigid tubular walls to define sides of the storage tank. Interior surfaces of the closure plates and exterior surfaces of the rigid tubular walls define an auxiliary fluid storage chamber. The storage tank also includes exterior support structures extending through the closure plates and between the exterior surfaces of the rigid tubular walls on some of the sides of the storage tank to reinforce the storage tank against dynamic loading from fluid in the interior fluid storage chamber.
Abstract:
Embodiments of the inventive concept include a manufactured pressure vessel including pressure cells having an impermeable layer containing porous material in which air can permeate, and a big mass layer disposed atop the pressure vessel to pressurize the air within the pressure vessel. The impermeable layer can include rubber from recycled vehicle tires. The big mass layer can have a total weight of between one (1) million and one (1) billion tonnes, or more. The big mass layer can include a remediated upper surface. The pressure vessel can include an interface section through which the air can enter and exit the pressure vessel. Pressure lines can be coupled to the interface section. A turbine center can be coupled to the pressure lines to generate electricity in response to pressurized air received through the pressure lines, or to pump air through the pressure lines into the pressure vessel to pressurize the pressure vessel.
Abstract:
A conformable fuel gas storage tank includes a housing that has exterior walls surrounding an interior. First and second base walls are spaced apart in a direction along a normal axis, side walls extend between the base walls and are spaced apart in a direction along a lateral axis, and end walls extend between the base walls and the side walls and are spaced apart in a direction along a longitudinal axis. Interior walls divide the interior and extend in a direction between the base walls and the end walls, and are spaced apart in a direction along the lateral axis. The interior walls establish elongate, laterally spaced, through channels extending longitudinally between the end walls. A gas storage material is located within the channels, and a gas permeable flow guide ex tends along at least one of the channels and through the gas storage material.
Abstract:
A fluid storage tank includes a plurality of tank sub-units disposed in an array. Each tank sub-unit of the plurality of tank sub-units has an aperture defined in at least one wall overlapping with another aperture defined in at least one adjacent tank sub-unit of the plurality of tank sub-units. Each tank sub-unit of the plurality of tank sub-units is in fluid communication with a single outlet port for selectively extracting a stored fluid from the tank. Each of the plurality of tank sub-units is in fluid communication with a single fluid fill port.
Abstract:
In accordance with an aspect of the present disclosure, a conformable high pressure gas fuel storage system has a high pressure gaseous storage vessel with a central section disposed between end sections and in fluid communication therewith. The end and central sections have hollow geometric objects. The geometric objects have self-similarity providing the gas storage vessel with a fractal geometry. Each geometric object of each end section branches into a plurality of the geometric objects of the central section. The geometric objects of the central section have a smaller cross-section and thinner outer wall than the geometric objects of the end sections. The geometric objects of at least the central section are formable with bends to a configuration to conform the gas storage vessel to a space in a vehicle in which the gas storage vessel is packaged.
Abstract:
A structural component with at least two side members has a support structure that includes a partition with multiple curved portions forming cells. The partition connects to the side members and extends between the side members at least partially along straight lines. The partition may extend along one or more straight lines from one side member to the other. One structural component is a container with a wall about the internal support structure. The container cells may be formed with a core structure. The core can include a permeable storage material and may be retained after formation, or may be removed. In some cases the container wall has generally planar surfaces, which may include surface undulations. Core structures are also provided for forming structural components. Formation can include casting a material about a core structure within a mold to form a partition extending between two or more sides.
Abstract:
A lightweight intermodal or road trailer based system for transporting refrigerated gaseous fluids is provided. The system includes an enclosed and insulated transportation housing, and a plurality of low-temperature resistant type 4 pressure vessels. The pressure vessels are at least three feet in diameter secured within the transportation housing for containing the gaseous fluids.
Abstract:
The present disclosure provides a conformal tank for adsorbent storage of gas. The tank includes a body having a substantially flat top wall, a substantially flat bottom wall and a pair of opposing sidewalls that join the top wall and bottom wall to form an open-ended cuboid having a first open end and an opposing second open end. The tank additionally includes a first end cap connected to the top wall, bottom wall and sidewalls at the first open end, and a second end cap connected to the top wall, bottom wall and sidewalls at the second open end, thereby defining an internal cavity in which gas can be removably stored. The tank further includes a plurality of wall supports connected the top and bottom walls to prevent deformation of the tank. The wall supports are structured to allow gas to move throughout the entire internal cavity of the tank.
Abstract:
The present disclosure relates to hull conversion of existing vessel for tank integration to allow storage of multiple hydrocarbon and non-hydrocarbon products onboard the existing vessel. In a converted vessel, a first liquefied hydrocarbon fluid may be stored in an added independent tank, while a second hydrocarbon fluid or a non-hydrocarbon fluid may be stored in an un-converted carge tank, which can be any one of a centre cargo tank, a port side tank or a starboard side tank.