Abstract:
A system is disclosed for handling, storing, transporting and dispensing cryogenic fluids, liquid natural gas, compressed natural gas, and their equivalents. A fuel injection system is disclosed for directly injecting LNG into an engine's combustion chamber. Such systems include a railroad system in which a container of fuel is carried on a flat car behind a locomotive and the, e.g. liquid natural gas, is conveyed to the locomotive with appropriate valves, conduits, pumps, and controls. In one aspect a fuel fluid, liquid, or vapor is injected into an intake (e.g., an air intake) of an engine. In one aspect a fueling station has been invented for providing services of dispensing LNG and/or CNG for engines.
Abstract:
In a motorcar having a compressed fuel cylinder charged with a compressed fuel disposed in a compartment, pipes connected to the fuel cylinder within the compartment are connected to a joint unit penetrating a partition wall partitioning the compartment from an outside and the joint unit is connected to pipes connected to an internal combustion engine and the like out of the compartment. A fuel charge passage, a fuel supply passage and a relief passage in a cylinder cap of the fuel cylinder and a fuel charge passage, a fuel supply passage and a relief passage in an interior side of the joint unit are connected with each other through an interior charge pipe, and interior supply pipe and an interior fuel relief pipe, respectively. A fuel charge pipe, a fuel supply pipe and a relief pipe out of the compartment are connected to a fuel charge passage, a fuel supply passage and a relief passage in an exterior side of the joint unit. The interior fuel charge pipe, the interior fuel supply pipe and the interior fuel relief pipe are covered by a seal cover airtightly. A fuel leakage inspection is conducted by comparing gas pressures at two different times after fuel charging in the piping outside the compartment.
Abstract:
A device, and a container having such a device, is provided for permitting filling the container with a predetermined weight of the fluid. The device and container include a main channel to introduce the fluid into the container at a fill pressure; a detector mechanism to detect a "filled" condition based on fluid weight; and an fluid-weight control mechanism to automatically prevent introducing fluid into the container in excess of the "filled" condition. A compression spring offsets part of the weight of a displacer such that the displacer becomes buoyant as the container becomes "filled". The displacer has a seat mechanism that sealingly engages an orifice mechanism creating a differential pressure, substantially less than the fill pressure, across a control device causing closure of the main channel. The fluid-weight control device, which is substantially independent of the composition and temperature of the fluid and of inertial effects induced in an attempt to thwart the fluid-weight control safeguard, also prevents introduction of fluid into the container as the container is non-upright. Modified embodiments utilize a pilot valve arrangement instead of the differential pressure feature. A method of practicing the invention is also provided.
Abstract:
A cryogenic gas transportation and delivery system for transporting the gas in a liquefied state and delivering it to a storage vessel in a vaporized or gaseous state. The system includes a mobile chassis, a vacuum-jacketed delivery vessel for storing the gas in the liquefied state, a vaporizer for vaporizing the liquefied gas into a vaporized state, and a compressor or pump to transfer the gas through the system so that it is delivered to the storage vessel as a compressed gas. When a compressor is used, the compressor is disposed between the vaporizer and the storage vessel. When a liquid pump is used, the pump is installed between the delivery vessel and the vaporizer.
Abstract:
Method and apparatus for transporting, storing and delivering dangerous chemicals in a high pressure stacked tube array configuration. Tubes are divided into sub-groups with outside tubes containing inert gases and inside tubes containing chemicals. Inside and outside tubes in each sub-group are manifolded to permit off loading of dangerous chemicals into outside tubes in the event of a leak in an inside tube or tubes in the sub-group. The apparatus includes a manifold system for segregation of source chemicals to provide two independent outlets.
Abstract:
A method and apparatus for storing ultra high purity non-cryogenic liquefied compressed gases, such as ammonia (NH.sub.3), and delivering a vaporized gaseous product from those liquefied gases for semiconductor processing applications. The delivery method includes withdrawing and heating gaseous product from a storage vessel containing the liquefied compressed gas, and then piping the heated gas through the liquid contained in the storage vessel in a heat exchange fashion. The heat exchange with the liquid inside the vessel induces boiling to maintain a vaporized gaseous product under a minimum positive pressure in said vessel. After liberating its heat, the gaseous product is delivered to a semiconductor manufacturing point of use.
Abstract:
A compressed natural gas refueling station tank comprises an elongated tubular body having a diameter of about 8 to 10 inches and a length of 50 feet or more. The tank is bent into a serpentine shape to produce a compact configuration which can be stacked with other like tanks and connected to a compressor through a manifold.
Abstract:
A relatively inexpensive system and method for regulating the temperature of a cryogenic liquid in a storage vessel (2), such as vehicle refueling station, comprises inner and outer walls (6, 8) defining a inner chamber (12) for housing the cryogenic liquid. To provide a variable thermal resistance around the inner chamber, a thermal control fluid is disposed within an insulation space (10) between the inner and outer walls. A fluid conduit (30) has an inlet and outlet in fluid communication with the chamber and a heat exchanger coil (36) disposed within the insulation space. A control valve (38) allows the cryogenic liquid to flow through the fluid conduit so that the cryogenic liquid is in heat exchange relationship with the thermal control gas as the liquid passes through the coil (i.e., the cryogenic liquid cools and condenses the thermal control gas to reduce the control gas pressure). The pressure of the control gas within the insulation space can be modulated to thereby control the heat flow into the inner chamber by controlling the flow rate of the cryogenic liquid through the fluid conduit.
Abstract:
This invention includes an above ground gas storage vessel of tubular or cylindrical configuration. A head or cap with threads mating the threads of the tube is screwed on each end of the tube to form a pressure vessel. Each cap contains a passage therein threaded to mate a reducing bushing. The reducing bushing likewise contains a passage which is at least partially threaded. This passage may be capped to prevent gas flow or valve to allow the flow of gas as required. In an alternative embodiment, the cap assembly is inserted into the tube and retained therein. A packing assembly would be used to seal the tube to prevent the escape of gas. A plurality of vessels are secured in a vertical-parallel arrangement using a support structure to increase gas storage capacity while taking up a minimal amount of ground space.
Abstract:
The storage tank consists of a main tank and ullage tank connected by a relatively small passage having a flow rate capacity up to 30% of the main fill line. To fill the tank, liquid cryogen is delivered to the main tank by either a top or bottom fill. Because the fill line is significantly larger than the passage, the main tank will become liquid full while the ullage tank remains substantially empty. When the tank becomes liquid full a dramatic drop in the flow rate will result that can be detected by a relatively insensitive, and inexpensive, flow monitoring device thereby to stop the filling operation. The ullage tank will retain trapped gas and gradually allow the liquid from the main tank to enter the ullage tank through the passage until the liquid level in the tanks are equal. Once the liquid levels in the tanks equalize, a vapor space is created above the liquid to accommodate vaporizing cryogen and provide long hold times.