Abstract:
The invention describes a composition that inhibits the polymerization of ethylenically unsaturated monomers, including at least 98% by weight of 4-tert-butylcatechol (4-TBC), 0.03% to 0.2% by weight of catechol (PC), and at least one impurity selected among 3-tert-butylcatechol, tert-butylhydroquinone, 3,5-di-tert-butylcatechol and mixture thereof, the total quantity of said impurities and of the PC being 0.1% to 0.8% by weight of said composition. The invention also describes a method for removing said polymerization-inhibiting composition present in a mixture including at least one ethylenically unsaturated monomer.
Abstract:
The present invention relates to the preparation of block copolymers, which can be used in particular as rheology agents, suitable, inter alia, for oil extraction, comprising a step of radical micellar polymerization wherein the following are brought into contact in an aqueous medium: —hydrophilic monomers, dissolved or dispersed in the aqueous medium; —hydrophobic monomers in the form of a micellar solution, i.e. containing, in a dispersed state, micelles comprising these hydrophobic monomers; —at least one radical polymerization initiator; and —at least one radical polymerization control agent. The polymers obtained according to the invention can be used in particular for enhanced oil recovery (EOR).
Abstract:
The invention relates to a process for the preparation of a novel precipitated silica, wherein: a silicate is reacted with an acidifying agent, so as to obtain a silica suspension; said silica suspension is filtered, so as to obtain a filter cake; said filter cake is subjected to a liquefaction operation, optionally in the presence of an aluminium compound; wherein at least one polycarboxylic acid is added to the filter cake, during or after the liquefaction operation. It also relates to a novel precipitated silica and to its uses.
Abstract:
A silica production method comprising reacting a silicate with at least one acid, in which the acid used in at least one of the steps of the production method is a concentrated acid, preferably selected from the group consisting of sulfuric acid having a concentration of at least 80% by weight, in particular at least 90% by weight, acetic acid having a concentration of at least 90% by weight, formic acid having a concentration of at least 90% by weight, nitric acid having a concentration of at least 60% by weight, phosphoric acid having a concentration of at least 75% by weight, and hydrochloric acid having a concentration of at least 30% by weight.
Abstract:
Described herein are methods for forming inorganic composite oxides. Such methods include combining, at a substantially constant pH of between about 5 and about 6.75 over a period of at least about 5 minutes, an acidic precursor composition and a basic composition to form a precipitate composition, wherein the acidic precursor composition comprises an alumina precursor, a ceria precursor, a zirconia precursor and optionally one or more dopant precursors; stabilizing the precipitate by increasing the pH of the precipitate composition to between about 8 and about 10; and calcining the stabilized precipitate to form an inorganic composite oxide. Also described are inorganic composite oxides formed using such methods.
Abstract:
Products and processes that are related to phosphonated polysaccharide compositions, including phosphonated polysaccharide gels, having a substituent degree of substitution with a lower limit of 0.02 and an upper limit of 3, and having a weight average molecular weight with an upper limit of 5,000,000 g/mole, as well as to oil field application or fracturing fluid compositions comprising such phosphonated polysaccharide compositions.
Abstract:
The present invention relates to the use of a cationic polysaccharide in a detergent composition used for treating dyed textile fibers in an aqueous medium, in order to reduce the loss of color of the dyed fibers when treating same using said detergent composition.
Abstract:
The instant invention relates to a method of phosphorodiamidite production that comprises: (E1) preparing a purified solution of a dialkylamine in a polar solvent as follows:—the dialkylamine dissolved in a polar solvent is contacted with a quantity of phosphorus trihalide that is sufficient to react with the alcohol impurities contained in the dialkylamine but sufficiently low to leave a major part of the dialkylamine unreacted, whereby a mixture is obtained that contains the dialkylamine in the polar solvent and reaction products of the impurities with the phosphorous trihalide;—the unreacted dialkylamine and polar solvent present in the mixture obtained in step (E1.1.) are extracted from the solution S by their difference of volatility, typically by distillation, whereby the purified solution of the dialkylamine in the polar solvent is obtained; (E2) the purified solution of dialkylamine in a polar solvent as obtained in step (E1) is reacted with a phosphorus trihalide, whereby an intermediate compound is formed; (E3) the intermediate compound obtained in step (E2) is reacted with a hydroxyalkyl compound in the presence of a non-polar co-solvent.
Abstract:
The present invention is directed to a process for making silver nanostructures, comprising reacting at least one polyol and at least one silver compound that is capable of producing silver metal when reduced, in the presence of a source of chloride or bromide ions, at least one copolymer, and at least one acid scavenger. The present invention is also directed to silver nanostructures made by the processes described herein.
Abstract:
Dry adjuvant compositions, which comprise a polysaccharide, alkali metal bicarbonate, potassium sulfate and a dispersant, as well as methods of making and applications thereof.