摘要:
Methods are provided for fabricating semiconductor IC (integrated circuit) chips having high-Q on-chip inductors formed on the chip backside and connected to integrated circuits on the chip frontside using through-wafer interconnects. For example, a semiconductor device with a backside integrated inductor includes a semiconductor substrate having a frontside, a backside and a buried insulating layer interposed between the front and backsides of the substrate. An integrated circuit is formed on the frontside of the semiconductor substrate and an integrated inductor is formed on the backside of the semiconductor substrate. An interconnection structure is formed through the buried insulating layer to connect the integrated inductor to the integrated circuit. The semiconductor substrate may be an SOI (silicon on insulator) structure.
摘要:
A method for determining the root causes of fail patterns in integrated circuit chips is provide wherein a known integrated circuit chip layout is used to identify a plurality of potential defects and a plurality of potential fail patterns in the integrated circuit chip. Correlations between the potential defects and the potential fail patterns that result from those defects are identified. Based on this identification, the potential fail patterns are grouped by common potential defect. An actual integrated circuit chip that is manufactured in accordance with the test layout is tested for failure patterns. These failure patterns are then compared to the groupings of potential fail patterns. When a match is found, that is when a given group of fail patterns is found in the actual integrated circuit chip, then the potential defect associated with the potential fail patterns to which the actual fail patterns are matched is identified. This defect is the root cause of the failure pattern in the actual chip.
摘要:
A method of fabricating a semiconductor device includes etching a substrate formed on a backside of a semiconductor wafer to form a recess in the substrate, and forming a sputter film in the recess, the sputter film including a first material having a coefficient of thermal expansion (CTE) which is at least substantially equal to a CTE of the substrate, and a second material having a thermal conductivity which is greater than a thermal conductivity of the substrate.
摘要:
A method of fabricating a MEMS switch having a free moving inductive element within in micro-cavity guided by at least one inductive coil. The switch consists of an upper inductive coil at one end of a micro-cavity; optionally, a lower inductive coil; and a free-moving inductive element preferably made of magnetic material. The coils are provided with an inner permalloy core. Switching is achieved by passing a current through the upper coil, inducing a magnetic field unto the inductive element. The magnetic field attracts the free-moving inductive element upwards, shorting two open conductive wires, closing the switch. When the current flow stops or is reversed, the free-moving magnetic element drops back by gravity to the bottom of the micro-cavity and the conductive wires open. When the chip is not mounted with the correct orientation, the lower coil pulls the free-moving inductive element back at its original position.
摘要:
An Integrated Circuit (IC) chip that may be a bulk CMOS IC chip with silicon on insulator (SOI) Field Effect Transistors (FETs) and method of making the chip. The IC chip includes areas with pockets of buried insulator strata and FETs formed on the strata are SOI FETs. The SOI FETs may include Partially Depleted SOI (PD-SOI) FETs and Fully Depleted SOI (FD-SOI) FETs and the chip may include bulk FETs as well. The FETs are formed by contouring the surface of a wafer, conformally implanting oxygen to a uniform depth, and planarizing to remove the Buried OXide (BOX) in bulk FET regions.
摘要翻译:一种集成电路(IC)芯片,其可以是具有绝缘体上硅(SOI)场效应晶体管(FET)和制造芯片的方法的体CMOS IC芯片。 IC芯片包括具有埋入绝缘体层的凹坑的区域,并且在层上形成的FET是SOI FET。 SOI FET可以包括部分耗尽的SOI(PD-SOI)FET和完全耗尽的SOI(FD-SOI)FET,并且芯片也可以包括体FET。 FET通过轮廓化晶片的表面,将氧气保形地均匀地注入到均匀的深度,并平坦化以去除体FET区域中的掩埋氧化物(BOX)来形成。
摘要:
Methods are provided for fabricating semiconductor IC (integrated circuit) chips having high-Q on-chip inductors formed on the chip backside and connected to integrated circuits on the chip frontside using through-wafer interconnects. For example, a semiconductor device with a backside integrated inductor includes a semiconductor substrate having a frontside, a backside and a buried insulating layer interposed between the front and backsides of the substrate. An integrated circuit is formed on the frontside of the semiconductor substrate and an integrated inductor is formed on the backside of the semiconductor substrate. An interconnection structure is formed through the buried insulating layer to connect the integrated inductor to the integrated circuit. The semiconductor substrate may be an SOI (silicon on insulator) structure.
摘要:
An Integrated Circuit (IC) chip that may be a bulk CMOS IC chip with silicon on insulator (SOI) Field Effect Transistors (FETs) and method of making the chip. The IC chip includes areas with pockets of buried insulator strata and FETs formed on the strata are SOI FETs. The SOI FETs may include Partially Depleted SOI (PD-SOI) FETs and Fully Depleted SOI (FD-SOI) FETs and the chip may include bulk FETs as well. The FETs are formed by contouring the surface of a wafer, conformally implanting oxygen to a uniform depth, and planarizing to remove the Buried OXide (BOX) in bulk FET regions.
摘要:
A method (and system) of reducing contact resistance on a silicon-on-insulator device, including controlling a silicide depth in a source-drain region of the device.
摘要:
An interconnect structure that includes a barrier-redundancy feature which is capable of avoiding a sudden open circuit after an electromigration (EM) failure as well as a method of forming the same are provided. In accordance with the present invention, the barrier-redundancy feature is located within preselected locations within the interconnect structure including in a wide line region, a thin line region or any combination thereof. The barrier-redundancy feature includes an electrical conductive material located between, and in contact with, a conductive line diffusion barrier of a conductive line and a via diffusion barrier of an overlying via. The presence of the inventive barrier-redundancy feature creates an electrical path between the via diffusion barrier along the sidewalls of the via and the conductive line diffusion barrier along the sidewalls of the conductive line. This electrical path generated by the inventive barrier-redundancy feature can avoid a sudden open circuit resulting from EM failure at the bottom of the via. The presence of the inventive barrier-redundancy feature within an interconnect structure provides sufficient time for chip replacement or system operation.
摘要:
Electrically programmable fuse structures for an integrated circuit and methods of fabrication thereof are presented, wherein the electrically programmable fuse has a first terminal portion and a second terminal portion interconnected by a fuse element. The first terminal portion and the second terminal portion reside at different heights relative to a supporting surface of the fuse structure, and the interconnecting fuse element transitions between the different heights of the first terminal portion and the second terminal portion. The first and second terminal portions are oriented parallel to the supporting surface, while the fuse element includes a portion oriented orthogonal to the supporting surface, and includes at least one right angle bend where transitioning from at least one of the first and second terminal portions to the orthogonal oriented portion of the fuse element.