Abstract:
Channel state information (CSI) and acknowledgement (ACK) reporting enhancements in Long Term Evolution (LTE)/LTE-Advanced (LTE-A) enabling communications over an unlicensed spectrum are disclosed. For example, ACK/NAK may include unlicensed spectrum interference information, such as WIFI interference. Additionally, in anticipation of a future downlink transmission, UEs may report WiFI interference to base stations absent a current downlink transmission. Also, CSI-RS and/or IMR resources may be staggered across subframes and/or within slots of subframes. Further, CSI reporting may include separate reports for CSI-RS resources that experience unlicensed spectrum interference and interference free CSI-RS resources. Still further, CSI reports may include a request to the base station to switch the current channel or band. Finally, inter-RAT ACK and CSI reporting may be provided on a second unlicensed spectrum band, such as a WIFI band, for a first unlicensed spectrum band, such as an LTE/LTE-A unlicensed band.
Abstract:
Systems and methodologies are described that facilitate transmitting access point types and/or restricted association parameters using broadcast signals, such as beacons, pilot signals, etc. The type or restricted association information can be indicated by one or more intrinsic aspects of the signal, such as specified parameters. In addition, the type or information can be indicated by one or more extrinsic signal aspects, such as frequency, interval, periodicity, etc. Using this information, a mobile device can determine whether an access point implements restricted association. If so, the mobile device can request an access point or related group identifier before determining whether to establish connection therewith. The identifier can be verified against a list of accessible access points and/or groups to make the determination.
Abstract:
Methods and apparatuses are described for wireless communications. A first method includes transmitting a first Orthogonal Frequency-Division Multiple Access (OFDMA) communications signal to a wireless node in a licensed spectrum, and transmitting, concurrently with the transmission of the first OFDMA communications signal, a second OFDMA communications signal to the wireless node in an unlicensed spectrum. A second method includes receiving a first Orthogonal Frequency-Division Multiple Access (OFDMA) communications signal from a wireless node in a licensed spectrum, and receiving, concurrently with the reception of the first OFDMA communications signal, a second OFDMA communication signal from the wireless node in an unlicensed spectrum. A third method includes generating a periodic gating interval for a cellular downlink in an unlicensed spectrum, and synchronizing at least one boundary of the periodic gating interval with at least one boundary of a periodic frame structure associated with a primary component carrier of the cellular downlink.
Abstract:
A method of wireless communication occurs in a frequency band having a first set of resources associated with a first carrier type and a second set of resources associated with a second carrier type. In one configuration, the first carrier type is a new carrier type and the second carrier type is a legacy carrier type. Legacy UEs may only receive signals from the second carrier type. However, new UEs may receive signals from both the first carrier type and the second carrier type. Therefore, to provide backward compatibility while supporting new UEs, an eNodeB may signal support of the first carrier type to a new UE while maintaining signaling with legacy UEs. Additionally, the eNodeB may restrict operations of a UE to the first set of resources or second set of resources.
Abstract:
Systems and methodologies are described that facilitate dynamically forming clusters in a wireless communication environment. A set of non-overlapping clusters can be formed dynamically over time and in a distributed manner. Each of the clusters can include a set of base stations and a set of mobile devices. The clusters can be yielded based upon a set of local strategies selected by base stations across the network converged upon through message passing. For example, each base station can select a particular local strategy as a function of time based upon network-wide utility estimates respectively conditioned upon implementation of the particular local strategy and disparate possible local strategies that can cover the corresponding base station. Moreover, operation within each of the clusters can be coordinated.
Abstract:
A method of wireless communication includes receiving activation parameters at a low power node and detecting a proximity of an active user equipment (UE) based at least in part on the activation parameters. The activation parameters are triggered from a node different from the low power node, such as an eNodeB. The low power node initiates an activation sequence after detecting the active UE.
Abstract:
Systems, methods and apparatus for facilitating handover control using resource reservation with frequency reuse are provided. In one embodiment, the method can include: transmitting scheduling information for the transmission of information on frequencies corresponding to an unreserved portion of a frequency band. The method can also include transmitting scheduling information for the transmission of information on frequencies corresponding to a reserved portion of the frequency band. A frequency reuse scheme can be employed over the frequencies corresponding to the reserved portion of the frequency band, and the information transmitted on the frequencies corresponding to the reserved portion of the frequency band can be handover signaling information.
Abstract:
A method of wireless communication, by a transmitting device, includes encoding information packets with an outer code to generate a first outer codeword. The first outer codeword includes information packets in addition to parity packets. The method also includes transmitting, to a receiving device, the information packets and the parity packets of the first outer codeword, according to a sequence. A method of wireless communication by a receiving device, includes receiving packets belonging to a first outer codeword, the packets including information packets and parity packets. The method also includes storing the packets in a buffer; and flushing the packets from the buffer in response to satisfying a condition.
Abstract:
A communications transceiver system that employs self-interference mitigation techniques can detect static objects by using techniques that introduce angular or Doppler diversity. This can include moving Tx and Rx antennas and/or performing beam sweeping. When processing RF sensing data from reflected RF signals, self-interference mitigation techniques can be used and compensation can be made for the movement and/or beam sweeping to allow for both self-interference mitigation and detection of static objects.
Abstract:
A user equipment (UE) operating in a discontinuous reception (DRX) mode may receive a wake-up signal indicating that the UE may skip the next ON duration of the DRX cycle, i.e., the UE is instructed to not wake up during a next ON time during the DRX cycle to monitor communication signals, such as data signals or control signals. The UE may be configured to receive downlink (DL) positioning reference signals (PRSs), e.g., during the next ON duration of the DRX cycle. The UE respond to the PRS configuration and the wake-up signal by remaining in DRX sleep mode and not receiving the PRS or transitioning to DRX ON mode to receive the PRS during which the UE may monitor or not monitor communication signals. The location server may receive indications of the wake-up signal configuration and status from a base station or the UE.