Abstract:
A vapor deposition particle emitting device (30) includes a hollow rotor (40) provided with a first and a second nozzle sections (50 and 60), a rolling mechanism, and heat exchangers (52 and 62), and when the rolling mechanism causes the rotor (40) to rotate, the heat exchangers (52 and 62) switch between cooling and heating in accordance with placement of the nozzle section so that that one of the nozzle sections which faces outward has a temperature lower than a temperature at which vapor deposition material turns into gas and the other nozzle section has a temperature equal to or higher than the temperature at which the vapor deposition material turns into the gas.
Abstract:
A film formation substrate (200) is a film formation substrate having a plurality of vapor deposition regions (24R and 24G) (i) which are arranged along a predetermined direction and (ii) in which respective vapor-deposited films (23R and 23G) are provided. The vapor-deposited film (24R) has inclined side surfaces 23s which are inclined with respect to a direction normal to the film formation substrate (200). A width, in the predetermined direction, of the vapor-deposited film (23R) is larger than the sum of (i) a width, in the predetermined direction, of the vapor deposition region (24R) and (ii) a width, in the predetermined direction, of a region (29) between the vapor deposition region (24R) and the vapor deposition region (24G).
Abstract:
The present invention provides a composite color image forming method. The method includes electrically charging a latent image-holding member; exposing the charged latent image-holding member to light to form an electrostatic latent image; developing the electrostatic latent image with a two-component developer containing toner particles of one color and a carrier to form a toner image on the latent image-holding member; primarily transferring the toner image from the latent image-holding member to an intermediate transfer member; repeating the electrically charging, the exposing, the developing, and the primarily transferring, while the toner particles are replaced with toner particles of different color, to form a composite color image on the intermediate transfer member; and secondarily transferring the composite color image from the intermediate transfer member to a recording medium. The carrier contains magnetic substance-dispersed core particles in which a magnetic substance is dispersed in a resin, and a coating layer that coats the surface of each of the magnetic substance-dispersed core particles at a covering rate of 95% or more. In addition, the carrier has a degree of circularity of 0.970 or more. The intermediate transfer member is a belt that has a substrate whose Young's modulus is in the range of 3,000 to 6,500 MPa. During the primary transferring, primary transfer nip pressure is in the range of 8 to 20 gf/cm, and a value (T/P) obtained by dividing a primary transfer current value T (μA) by a processing speed P (mm/sec) is from 0.08 to 0.18.
Abstract:
A donor film 40 including an organic donor layer 42 and a transfer target substrate 12 including a lower electrode 7 are prepared. The organic donor layer 42 is thermally transferred to the top of the lower electrode 7 of the transfer target substrate 12 to form an organic layer 17 by placing the donor film 40 between the transfer target substrate 12 and a thermal head 38 and bringing the transfer target substrate 12 and the thermal head 38 into close contact with each other by magnetic attraction of a magnetic body 4, and then an upper electrode is formed on the organic layer 17, to obtain an organic EL element. This provides an organic EL element with excellent quality free from unevenness in the transfer of the organic donor layer from the donor film even when the transfer target substrate is large in size.
Abstract:
An object is to provide a cell growth inhibitor also effective for androgen-independent prostate cancer. The present invention provides a cell growth inhibitor having, as an active ingredient, an expression inhibitor or function inhibitor of an antisense RNA (CTBP1-AS) expressed in the vicinity of an androgen receptor (AR) binding site of a C-terminal binding protein (CTBP1) gene.
Abstract:
A vapor deposition particle injection device (30) includes a vapor deposition particle generating section (41), at least one nozzle stage made of an intermediate nozzle section (51), a vapor deposition particle emitting nozzle section (61), and heat exchangers (43, 63, 53). The vapor deposition particle emitting nozzle section (61) is controlled so as to be at a temperature lower than a temperature at which a vapor deposition material turns into gas. Meanwhile, the intermediate nozzle section (51) is controlled by the heat exchanger (53) so as to be at a temperature between a temperature of the vapor deposition particle generating section (41) and a temperature of the vapor deposition particle emitting nozzle section (61).
Abstract:
A layer (71), made from a material that is attracted by a magnet, is formed in at least part of a chamber component (70), which at least part makes in contact with a film forming material. A method for collecting a film forming material includes the steps of: (a) exfoliating an attachment (22) which has attached to a surface of the chamber component (70); and (b) collecting the attachment (22) by separating a fragment of the layer (71), which fragment has been exfoliated in the step (a), while causing the fragment to be attracted by a magnet (202a).
Abstract:
A vapor deposition source (60), a limiting plate unit (80), and a vapor deposition mask (70) are disposed in this order. The limiting plate unit includes a plurality of limiting plates (81) disposed along a first direction. At least a portion of surfaces (83) defining a limiting space (82) of the limiting plate unit and surfaces (84) of the limiting plate unit opposing the vapor deposition source is constituted by at least one outer surface member (110, 120) capable of attaching to and detaching from a base portion (85). Accordingly, a vapor deposition device that is capable of forming a coating film in which edge blur is suppressed on a large-sized substrate and that has excellent maintenance performance can be obtained.
Abstract:
A coating film (90) is formed by causing vapor deposition particles (91) discharged from a vapor deposition source opening (61) of a vapor deposition source (60) to pass through a space between a plurality of control plates (81) of a control plate unit (80) and a mask opening (71) of a vapor deposition mask in this order and adhere to a substrate, while the substrate (10) is moved relative to the vapor deposition mask (70) in a state in which the substrate (10) and the vapor deposition mask (70) are spaced apart at a fixed interval. A difference in the amount of thermal expansion between the vapor deposition source and the control plate unit is detected and corrected. It is thereby possible to form, at a desired position on a large-sized substrate, the coating film in which edge blur and variations in the edge blur are suppressed.
Abstract:
Provided is a TFT substrate (10) on which vapor-deposited sections are to be formed by use of a vapor deposition device (50) which includes a vapor deposition source (85) having injection holes (86); and a vapor deposition mask (81) having opening (82) through which vapor deposition particles are deposited to form the vapor-deposited sections. The TFT substrate (10) includes pixels two-dimensionally arranged in a pixel region (AG); and wires (14) electrically connected to the respective pixels. The vapor-deposited sections (Q) are formed with gaps (X) therebetween, and the wires (14) having respective terminals that are disposed in the gaps (X).