Abstract:
An apparatus for wet processing individual wafers comprising; a means for holding the wafer; a means for providing acoustic energy to a non-device side of the wafer; and a means for flowing a fluid onto a device side of the wafer.
Abstract:
Cleaning solutions and cleaning methods targeted to particular substrates and structures in semiconductor fabrication are described. A method of cleaning fragile structures having a dimension less than 0.15 um with a cleaning solution formed of a solvent having a surface tension less than water while applying acoustic energy to the substrate on which the structures are formed is described. Also, a method of cleaning copper with several different cleaning solutions, and in particular an aqueous sulfuric acid and HF cleaning solution, is described. Also, methods of cleaning both sides of a substrate at the same time with different cleaning solutions applied to the top and the bottom are described.
Abstract:
Apparatuses and methods of processing a substrate. The apparatus includes a wet-cleaning chamber, a drying chamber, and a substrate transferring chamber which transfers a substrate to and from the wet-cleaning chamber and the drying chamber. The drying chamber is one of a supercritical drying chamber or a low pressure drying chamber. The wet-cleaning chamber is one of a single-wafer cleaning chamber, a horizontal spinning chamber, a megasonic wet-cleaning chamber, or a horizontal spinning chamber having acoustic waves transmitted to the substrate.
Abstract:
The present invention is a novel cleaning method and a solution for use in a single wafer cleaning process. According to the present invention the cleaning solution comprises ammonium hydroxide (NH4OH), hydrogen peroxide (H2O2), water (H2O) and a chelating agent. In an embodiment of the present invention the cleaning solution also contains a surfactant. And still yet another embodiment of the present invention the cleaning solution also comprises a dissolved gas such as H2. In a particular embodiment of the present invention, this solution is used by spraying or dispensing it on a spinning wafer.
Abstract:
Embodiments of the present invention generally relate to methods and apparatuses using supercritical fluids and/or dense fluids in semiconductor applications. In one embodiment, a substrate structure is dried by applying a supercritical fluid, a dense fluid, or combinations thereof. In another embodiment, a substrate structure is cleaned by applying a supercritical fluid, a dense fluid, or combinations thereof. In still another embodiment, a low-k material layer is repaired by applying a supercritical fluid, a dense fluid, or combinations thereof. In yet another embodiment, a photoresist layer is stripped by applying a supercritical fluid, a dense fluid, or combinations thereof. In another embodiment, a porous low-k material layer is deposited by applying a supercritical fluid, a dense fluid, or combinations thereof.
Abstract:
A single wafer cleaning chamber that includes a rotatable bracket that can place a wafer beneath an upper end of a catch cup during a wafer cleaning process, a gutter positioned above a wafer transfer slit; where the catch cup can mate with the gutter to create a gap, and with the upper end of the catch cup positioned at a height equal to or higher than the gutter.
Abstract:
The present invention provides systems and methods of determining the concentration of chemicals in a wet processing stream where the wet processing stream is formed from two or more liquid streams having known chemical concentrations. The concentration of chemicals in the wet processing stream are monitored by measuring the flow rates of the liquid streams during combination to form the wet processing stream, and calculating the concentrations of chemicals in the wet processing stream based on the flow rates and known chemical concentrations of the liquid streams. The present invention also provides systems and methods for controlling the wet processing of semiconductor substrates using the calculated concentrations in the wet processing stream. The methods and systems of the present invention are particularly useful when the semiconductor substrates are contacted with the wet processing stream in a single pass.
Abstract:
The present invention provides methods for efficiently cleaning semiconductor wafers, and particularly for removing photoresist material from the surfaces of semiconductor wafers, using a mixture of sulfuric acid and hydrogen peroxide. In accordance with the present invention, an initial sulfuric acid-based photoresist stripping bath, either being pure sulfuric acid or a sulfuric acid:hydrogen peroxide mixture with a ratio of at least 15:0.3, based on the anhydrous chemical substances, is prepared for processing an initial batch of wafers. During the processing of the semiconductor wafers, hydrogen peroxide is added to the bath solution at a controlled rate of between about 0.015-1.5 g H.sub.2 O.sub.2 (anhydrous basis)/min./liter of photoresist bath solution. In such a way, the conversion of hydrogen peroxide to Caro's acid is optimized resulting in an extended bath life and conservation of hydrogen peroxide.
Abstract translation:本发明提供了使用硫酸和过氧化氢的混合物有效地清洁半导体晶片,特别是用于从半导体晶片的表面去除光致抗蚀剂材料的方法。 根据本发明,制备基于无水化学物质的初始硫酸类光致抗蚀剂剥离浴,其为纯硫酸或比例至少为15:0.3的硫酸:过氧化氢混合物,用于 处理初始批次的晶圆。 在半导体晶片的加工期间,过氧化氢以约0.015-1.5g H 2 O 2(无水基)/分/分光刻胶浴溶液的控制速率加入到浴溶液中。 以这种方式,过氧化氢向卡罗酸的转化被优化,导致延长的浴寿命和过氧化氢的保存。