Abstract:
In some embodiments, a system comprises a clock, a root node, a radio channel network, and first and second child nodes. The clock may be configured to generate a clock signal. The root node may be configured to generate a first frame including a first payload and a first overhead and generate a second frame including a second payload and a second overhead. The first and second overheads may comprise a synchronization value based on the clock signal. The radio channel network may be in communication with the root node for transmitting the first and second frames. Each first and second child nodes may be configured to perform clock recovery including frequency synchronization using the synchronization value and a respective phase-lock loop.
Abstract:
An exemplary method comprises positioning a first antenna to receive a first signal from a second antenna, the second antenna comprising energy absorbing material that functions to expand beamwidth, receiving the first signal from the second antenna, detecting a plurality of gains based on the first signal, repositioning the first antenna relative to the second antenna to a position associated with an acceptable gain based on the first signal, removing at least some of the energy absorbing material from the second antenna to narrow the beamwidth of the second antenna, receiving, by the first antenna, a second signal from the second antenna, detecting a plurality of gains based on the second signal, and repositioning the first antenna relative to the second antenna to a position associated with an increased gain of the plurality of gains based on the second signal, the increased gain being greater than the acceptable gain.
Abstract:
Systems and methods for combining signals from multiple active wireless receivers are discussed herein. An exemplary system comprises a first downconverter, a phase comparator, a phase adjuster, and a second downconverter. The first downconverter may be configured to downconvert a received signal from a first antenna to an intermediate frequency to create an intermediate frequency signal. The phase comparator may be configured to mix the received signal and a downconverted signal to create a mixed signal, compare a phase of the mixed signal to a predetermined phase, and generate a phase control signal based on the comparison, the downconverted signal being associated with the received signal from the first antenna. The phase adjuster may be configured to alter the phase of the intermediate frequency signal based on the phase control signal. The second downconverter may be configured to downconvert the phase-shifted intermediate frequency signal to create an output signal.
Abstract:
Systems and methods for transceiver communication are discussed herein. A filter module may be configured to filter each carrier signal of a multicarrier transmit signal with a different bandpass filter, each bandpass filter configured to filter a different frequency band. A carrier control module may be configured to control the plurality of bandpass filters of the filter module using a carrier selection signal to enable or disable each bandpass filter, thereby coupling carrier signals of the multicarrier transmit signal to a first set of bandpass filters and decoupling a second set of bandpass filters. Filtering the carrier signals of the multicarrier transmit signal is performed by the first set of bandpass filters while the decoupling of the second set of bandpass filters limits energy in the respective frequency band. An antenna may be configured to transmit the filtered multicarrier transmit signal.
Abstract:
An exemplary system comprises at least one antenna, first and second signal paths, and an N-plexer. The first antenna may be configured to receive first and second diversity received signals. The first signal path may have a first converter configured to convert the first diversity received signal to first carrier group. The second signal path may have a second converter configured to convert the second diversity received signal to a second carrier group. The N-plexer may be configured to provide the first and second diversity received signals to a first cable in communication with a first modem.
Abstract:
An interference detection system comprises memory storing computer instructions to cause a processor to perform gathering a temporal snapshot of radio parameter values associated with a first site of a point-to-point radio system, the radio parameter values including at least a receive signal level (RSL) value and at least one other radio parameter value correlated with signal degradation; determining whether the RSL value is greater than an RSL threshold; determining whether the other radio parameter value indicates a threshold level of signal degradation; when the RSL is greater than the RSL threshold and the other parameter indicates a threshold level of signal degradation during the temporal snapshot, determining that external interference is present during the temporal snapshot; when the RSL is not greater than the RSL threshold, determining that the external interference is not present; and performing a responsive action to a determination of the external interference being likely present.
Abstract:
A first layer one link aggregation master comprises a first port coupled to receive customer traffic; a first channel; a second channel; an aggregation engine coupled to the first and second channels; a first switch circuit coupled to the first port and to the first channel, and configured to communicate the customer traffic from the first port over the first channel to the aggregation engine, the aggregation engine including a splitter circuit configured to use layer one information to segment at least a portion of the customer traffic into a first virtual container and a second virtual container, the aggregation engine further including an encapsulation circuit configured to encapsulate the second virtual container using Ethernet standards for transport over the second channel; a radio access card configured to generate an air frame based on the first virtual container for wireless transmission over a first wireless link of a link aggregation group to the receiver; and a second switch circuit coupled to the second channel, and configured to communicate the Ethernet-encapsulated second virtual container over an Ethernet cable to a slave for wireless transmission over a second wireless link of the link aggregation group to the receiver.
Abstract:
Rapid failure detection and recovery in wireless communication networks is needed in order to meet, among other things, carrier class Ethernet transport channel standards. Thus, resilient wireless packet communications is provided using a hardware-assisted rapid transport channel failure detection algorithm and a Gigabit Ethernet data access card with an engine configured accordingly. In networks with various topologies, this is provided in combination with their existing protocols, such as rapid spanning tree and link aggregation protocols, respectively.
Abstract:
Rapid failure detection and recovery in wireless communication networks is needed in order to meet, among other things, carrier class Ethernet transport channel standards. Thus, resilient wireless packet communications is provided using a hardware-assisted rapid transport channel failure detection algorithm and a Gigabit Ethernet data access card with an engine configured accordingly. In networks with various topologies, this is provided in combination with their existing protocols, such as rapid spanning tree and link aggregation protocols, respectively.
Abstract:
Rapid failure detection and recovery in wireless communication networks is needed in order to meet, among other things, carrier class Ethernet transport channel standards. Thus, resilient wireless packet communications is provided using a hardware-assisted rapid transport channel failure detection algorithm and a Gigabit Ethernet data access card with an engine configured accordingly. In networks with various topologies, this is provided in combination with their existing protocols, such as rapid spanning tree and link aggregation protocols, respectively.