Abstract:
A sintered dense glass, alumina-doped optical fiber preform is stretched and is then heated to a temperature of 1490-1495° C. to remove bubbles without causing crystallization. Thereafter, the stretched glass body is either drawn directly into an optical fiber or overclad and then drawn into a fiber.
Abstract:
Soft quartz glass having low viscosity and a low thermal coefficient of expansion, high electrical insulation capability and free from release of contaminants, when used as a bulb of an incandescent lamp or as an envelope in an arc vessel of a discharge lamp, is a quartz glass made of ultra-pure quartz (SiO.sub.2), for example having a purity of 99.99 mol-%, doped with stoichiometric compounds of alkaline earth oxides with boron oxide, optionally also with a small quantity of Al.sub.2 O.sub.3 in an overall quantity of the doping substance of between about 0.05% to 0.8%, by weight.
Abstract:
A synthetic quartz glass substrate (1) supporting active elements is formed of high-purity synthetic quartz glass having, a hydroxyl group content of 200 ppm or below and chlorine group content of 50 ppm or below. The substrate (1) may have an impurity level of 1 ppm or less sodium and 1 ppm or less aluminum. TFTs (6), i.e., active elements, and picture element electrodes (7) are formed on the surface of the synthetic quartz glass substrate (1) to construct a driving panel for a liquid crystal display of an active matrix type. A liquid crystal panel is formed by disposing the driving panel and a counter substrate (2) opposite to each other and sandwiching a liquid crystal layer (3) between the driving panel and the counter substrate (2).
Abstract:
Gradient-index glass is produced in a sol-gel process by utilizing water or a mixture of water and alcohol. This technique is particularly suitable for production of glass bodies with a ternary system of metal alkoxides, including silicon alkoxide, an index modifying metal alkoxide, such as alkoxides of titanium and zirconium, and an additional metal alkoxide, such as an alkoxide of aluminum, boron, or germanium.
Abstract:
A method is disclosed wherein high purity fused silica is produced from a liquid flowable form of a silica slurry or sol and the refractoriness of the fused silica is enhanced by homogeneously doping the silica with aluminum and/or titanium oxide, preferably in conjunction with elemental silicon.
Abstract:
Thermally stable, mechanically strong microporous glass articles with large pore volumes, surface areas, and varying pore sizes, and methods for making such articles are disclosed. In particle form, such as beads, the microporous glass articles are useful as catalyst supports in applications such as petroleum catalytic refiners, chemical processes and motor vehicle catalytic mufflers. The mechanical strength and the dimensional stability of the microporous glass articles at elevated temperatures can be improved if the articles are preshrunk, such as by brief exposure to high temperatures, before their intended use, and can be improved even further if treated with certain metal oxides.
Abstract:
A method of producing a glass body composed of two or more oxides by the flame hydrolysis technique, for example incorporating an additive or dopant oxide in a fused silica glass body. The method comprises forming a gas stream containing vapors of a compound that will hydrolyze to a glass forming oxide, e.g. silicon tetrachloride (SiCl4), entraining an oxide, or material convertible thereto, in the form of solid particles not over about one micron in size, and simultaneously passing the vapors and particles into a flame of combustible gas to form and codeposit an oxide mixture.
Abstract:
A method of incorporating an additive or dopant oxide in a glass body produced by the flame hydrolysis technique. Particles of the primary glass former are produced by flame hydrolysis and deposited to form a porous body. This is impregnated with a vaporized dopant which condenses within the pores on cooling. The body is then thermally consolidated with the dopant dispersed therein.
Abstract:
Disclosed herein are embodiments of a glass pharmaceutical package with unique composition. The pharmaceutical package includes a glass container with a first and second surface, the first surface being an outer surface of the glass container. The glass container is formed from a borosilicate glass composition, the glass composition including: at least 75 mol % SiO2; at least 10 mol % B2O3; and Al2O3 in an amount such that sum of SiO2, B2O3, and Al2O3 is at least 90 mol %. The glass container has at least two of the following: a hydrolytic resistance of class HGA 1 according to ISO 720:1985, a base resistance of class A1 or class A2 according to ISO 695:1991, and an acid resistance of class S2 or class S1 according to DIN 12116 (2001).