Abstract:
Improved electrical testing of N-port beamforming devices is provided. For testing, an N:1 electrical network is connected to the N ports of the device under test to provide a single test port. This mode of testing can be used to determine parameters of interest (e.g., far field radiation patterns etc.) of the device under test more rapidly than with antenna range testing or with characterization of each port of the device under test. The N:1 electrical network can be passive or active. The N:1 electrical network can be integrated in a probe head to provide probe array testing of beamforming devices. Alternatively, the N:1 electrical network can be integrated with the device under test to provide onboard testing capability.
Abstract:
Methods of controlling the operation of probe stations and probe stations that perform the methods. The methods including generating a test routine by constructing a substrate map, receiving a test subset input from a user, and updating the substrate map to incorporate information regarding which devices under test (DUTS) of a plurality of DUTs are in a test subset of a plurality of DUTs. The methods also include receiving a pre-test subset input from the user, wherein the pre-test subset is a subset of the test subset, and updating the substrate map to incorporate information which DUTs of the test subset are in the pre-test subset. The methods further include executing the test routine by moving a probe assembly to each DUT in the test subset, selectively performing a pre-test routine on each DUT that is in the pre-test subset, and electrically testing each DUT in the test subset.
Abstract:
Crosstalk between probes in a vertical probe array is reduced by providing a grounded metal carrier disposed between the guide plates of the probe array. The metal carrier includes pockets that are laterally separated from each other by the metal carrier. Probes in different pockets are thereby electrically shielded from each other.
Abstract:
Elongated flexible probes can be disposed in holes of upper and lower guide plates of a probe card assembly. Each probe can include one or more spring mechanisms that exert normal forces against sidewalls of holes in one of the guide plates. The normal forces can result in frictional forces against the sidewalls that are substantially parallel to the sidewalls. The frictional forces can reduce or impede movement parallel to the sidewalls of the probes in the holes.
Abstract:
A probe card assembly can comprise a guide plate comprising probe guides for holding probes in predetermined positions. The probe card assembly can also comprise a wiring structure attached to the guide plate so that connection tips of the probes are positioned against and attached to contacts on the wiring structure. The attachment of the guide plate to the wiring structure can allow the wiring structure to expand or contract at a greater rate than the guide plate. The probes can include compliant elements that fail upon high electrical current and thermal stresses located away from the contact tips.
Abstract:
The present invention is a probe array for testing an electrical device under test comprising one or more ground/power probes and one or more signal probes and optionally a gas flow apparatus.
Abstract:
Improved probing of closely spaced contact pads is provided by an array of vertical probes having all of the probe tips aligned along a single contact line, while the probe bases are arranged in an array having two or more rows parallel to the contact line. With this arrangement of probes, the probe base thickness can be made greater than the contact pad spacing along the contact line, thereby advantageously increasing the lateral stiffness of the probes. The probe tip thickness is less than the contact pad spacing, so probes suitable for practicing the invention have a wide base section and a narrow tip section.
Abstract:
An electrical connection between an electrically conductive probe on one device and a compliant pad on another device can be formed by piercing the compliant pad with the probe. The probe can contact multiple electrically conductive elements inside the pad and thereby electrically connect to the pad at multiple locations inside the pad.
Abstract:
A multiple conduction path probe can provide an electrically conductive signal path from a first contact end to a second contact end. The probe can also include an electrically conductive secondary path and an electrically insulated gap between the signal path and the secondary path. The gap can be relatively small and thus provide the probe with a low loop inductance. A probe assembly can comprise multiple such probes disposed in passages in substantially parallel electrically conductive guide plates. The signal path of each of the probes can be electrically insulated from both guide plates, but the secondary path of each probe can be electrically connected to one or both of the guide plates. In some configurations, the probe assembly can include one or more secondary probes disposed in passages of the conductive guide plates and electrically connected to one or both of the guide plates. In some configurations, a probe assembly can comprise probes that are substantially the same shape and/or configuration all of which are disposed in passages through substantially parallel guide plates. Some of the probes can be electrically insulated from the guide plates and thus provide signal paths, and others of the probes can be electrically connected to the guide plates and thus provide secondary paths. Any of the foregoing types of probe assemblies can be part of a test contactor such as a probe card assembly, a load board, or the like.