Abstract:
A semiconductor body is formed from a first semiconductor material, e.g., silicon. A compound semiconductor region, e.g., silicon germanium, is embedded in the semiconductor body. The compound semiconductor region includes the first semiconductor material and a second semiconductor material. The compound semiconductor region has a concentration of the second semiconductor material that varies along an interface between the side portion of the compound semiconductor region and the side portion of the semiconductor body
Abstract:
A method of manufacturing dual embedded epitaxially grown semiconductor transistors is provided, the method including depositing a first elongated oxide spacer over first and second transistors of different types, depositing a first elongated nitride spacer on the first oxide spacer, depositing a first photoresist block on the nitride spacer above the first transistor, etching the first nitride spacer above the second transistor, implanting a first halo around the second transistor, etching a first recess in an outer portion of the first halo, stripping the first photoresist above the first transistor, forming a first epitaxially grown semiconductor material in the first recess, implanting a first extension in a top portion of the first material, depositing an elongated blocking oxide over the first and second transistors and first extension, depositing a second photoresist block on the blocking oxide above the second transistor and first extension, etching the blocking oxide and first nitride spacer above the first transistor, implanting a second halo around the first transistor, etching a second recess in an outer portion of the second halo, stripping the second photoresist above the second transistor, forming a second epitaxially grown semiconductor material in the second recess, implanting a second extension in a top portion of the second material, etching the blocking oxide above the second transistor, etching nitride caps from the first and second transistors, depositing a second elongated oxide spacer on the first and second transistors, depositing a second elongated nitride spacer on the second oxide spacer, etching the second nitride spacer to leave nitride sidewalls around gates of the first and second transistors, and implanting deep sources and drains in the first and second transistors.
Abstract:
An integrated circuit that includes a substrate having first and second active regions is disclosed. A first transistor of a first type and a second transistor of a second type are disposed in the first and second active regions respectively. Each transistor includes a gate stack having a metal gate electrode over a gate dielectric layer. First and second gate threshold voltage adjusting (GTVA) layers contacting first and second gate dielectric layer of the first and second transistors are provided. The first GTVA layer tunes a gate threshold voltage of the first transistor. A channel of the second transistor includes dopants to tune the gate threshold voltage of the second transistor.
Abstract:
A method for streaming multi-LOD design feature of a 3D-CAD model comprises defining a LOD of a 3D-CAD model with each design feature of the 3D-CAD model, wherein the design feature is the smallest 3D-CAD model constructing unit; constructing the LOD of the 3D-CAD model into a decomposition data structure of LOD design feature recording each design feature of the 3D-CAD model in different LODs, wherein the LOD comprises all unit assembly faces of the design features; constructing a switch face display mechanism controlling whether each design feature of the 3D-CAD model is displayed; and encapsulating a designated design feature into a packet based on users' configuration and transmitting the packet. The invention achieves multi-tier real-time incremental streaming transmission and implements streaming transmission into point-to-point information sharing for collaborative participants to receive information from others to obtain higher level information and share information to others for integrated information sharing efficiency.
Abstract:
A linker polynucleotide for attaching a nanomaterial to a polynucleotidic platform and related nanoassemblies, arrangements, structures, methods and systems.
Abstract:
A method for fabricating a semiconductor device includes forming an SiGe region. The SiGe region can be an embedded source and drain region, or a compressive SiGe channel layer, or other SiGe regions within a semiconductor device. The SiGe region is exposed to an SC1 solution and excess surface portions of the SiGe region are selectively removed. The SC1 etching process can be part of a rework method in which overgrowth regions of SiGe are selectively removed by exposing the SiGe to and SC1 solution maintained at an elevated temperature. The etching process is carried out for a period of time sufficient to remove excess surface portions of SiGe. The SC1 etching process can be carried out at elevated temperatures ranging from about 25° C. to about 65° C.
Abstract:
Methods of fabricating transistors and semiconductor devices and structures thereof are disclosed. In one embodiment, a method of fabricating a transistor includes forming a gate dielectric over a workpiece, forming a gate over the gate dielectric, and forming a stress-inducing material over the gate, the gate dielectric, and the workpiece. Sidewall spacers are formed from the stress-inducing material on sidewalls of the gate and the gate dielectric.
Abstract:
A trench is formed in the surface of a provided semiconductor body. An oxide is deposited in the trench and a cap is deposited on the oxide, wherein the combination of the cap and the oxide impart a mechanical stress on the semiconductor body.
Abstract:
In one embodiment, the invention is a complementary metal-oxide-semiconductor device with an embedded stressor. One embodiment of a field effect transistor includes a silicon on insulator channel, a gate electrode coupled to the silicon on insulator channel, and a stressor embedded in the silicon on insulator channel and spaced laterally from the gate electrode, where the stressor is formed of a silicon germanide alloy whose germanium content gradually increases in one direction.
Abstract:
The invention provides compositions and methods for signal activated RNA interference (saRNAi), preferably in vivo. The invention provides polynucleotides that switches between an inactive form and an active form upon covalent or non-covalent interaction with one or more specific chemical signals, such as disease-specific mRNA, miRNA, or other cellular RNA products with sequences that characterize diseased states of the cell. The interaction between the subject polynucleotides and the signals is preferably mediated by hybridization, which exposes, facilitates the formation, and/or allows the formation of a substrate that can be processed by proteins of the RNAi pathway (such as Dicer). The input and output of multiple different polynucleotides of the invention can form an in vivo signaling network. In addition, the multiple input signals can be integrated to modulate the activity of the subject polynucleotides.