Abstract:
A method for fabricating a memory unit with T-shaped gate. A semiconductor substrate forming a dielectric layer, a first opening, and a second opening is provided in a CMOS process. A silicate glass spacer is formed on the sidewall of the first opening and is thermally oxidized to form a light doped area under the silicate glass spacer. The silicate glass spacer is removed. An insulating spacer is formed on the sidewall of the first opening. A first spacer is formed on a sidewall of the second opening. N-type conducting spacers are formed respectively on sidewalls of the insulating spacer and the first spacer. Gate dielectric layers are formed respectively in the first opening and the second opening. A P-type conducting layer fills with the first opening and the second opening, and a second spacer is formed on a sidewall of a conducting spacer of the second opening.
Abstract:
A bridging agent for improving the bond between incompatible component layers of laminates comprising one or more N-substituted melamine compounds. The bridging agent is comprised of an N-substituted melamine, an N-substituted melamine formaldehyde resin, a hybrid N-substituted melamine resin, or mixtures of these resins. The bridging agent improves bonding between laminate layers known not to bond well together such as between a styrenated polyester top coat and a melamine impregnating resin. As a result of improving the bond between the incompatible component layers, the bridging agent improves the blister resistance and cove forming characteristics of the laminate. The bridging agent can be used to improve bonding both with and without an overlay paper layer.
Abstract:
Structure of a wide voltage operation regime double heterojunction bipolar transistor, specifically a modified InGaP/GaAs double heterojunction bipolar transistor featuring a very broad collector-emitter voltage operation range, an invention of high speed, low power consumption and high breakdown voltage rated microwave power transistor. Unique in the incorporation of In.sub.0.49 Ga.sub.0.51 P collector layer, GaAs delta-doping sheet and undoped GaAs spacer in the collector zone. The introduction of a spacer with a delta doping sheet into the effective base-collector heterojunction serves to eliminate potential spike from appearing at base-collector interfacing any more, thus effectively precludes electron blocking effect. In the emitter zone the inventive design comprises a five-period In.sub.0.49 Ga.sub.0.51 P/GaAs superlatticed confinement layer to GaAs emitter homojunction, with superlatticed confinement layer functioning as a containment layer for minority (hole), while the base-emitter homojunction homojunction serves to control the majority (electron) being emitted from the emitter into the base. That achieves an enhanced emitter injection efficiency and lowered offset voltage at the same time, as such, the invention transistor is very fit for application in digital as well as analogue circuits preconditioned by high speed, low power consumption, and high breakdown voltage performances.
Abstract:
A system and a method for administering a solution (12) from a container (10) to a patient (35) are provided. The container (10) is divided into a solution side (16) and a drain side (18) separated by a tear line (20). The solution side (16) and the drain side (18) are in fluid communication with one another and with a port (28) that connects to the patient (35). The container (10) is separable at the tear line (20) such that contents of a peritoneum cavity of the patient (35) may be drained into the drain side (18) of the container (10). Then, the solution (12) from the solution side (16) of the container (10) may be drained from the container (10) into the patient (35).
Abstract:
A PM step motor fabrication method including the steps of i) preparing two windings, ii) fastening two annular intermediate metal plates together by spot welding, iii) mounting the windings on the annular intermediate metal plates, then covering two annular cover shells on the windings, and then fastening a top cap with an axle bearing to one annular cover shell, and then injection-molding a plastic packing member on the top cap within the annular cover shells to form a stator, iv) preparing a rotor, v) processing axle cap with an axle bearing by injection-molding, and vi) installing the rotor in the stator, permitting it to be supported on the axle bearing of the top cap and the axle bearing of the axle cap.
Abstract:
An assistive device structure for positioning and pressure relief is provided, including a first elastic layer and a second elastic layer, which are attached by using a high-frequency encapsulation process, sealing, bagging, thermoforming, or an integrally molding process. Each of the first and second elastic layers has a bottom surface and an arc surface disposed opposite to each other. The arc surface includes two protrusions and a recess formed there in between. The two protrusions have different heights. A hollow area is disposed in the recess of the first and second elastic layers. Based on such structure, the bottom surfaces of the first and second elastic layers are attached to form the proposed assistive device structure for a user to lean against and providing multiple positioning effects and pressure relief. More than four axial directions of supporting forces are generated to effectively enhance muscle relaxation and stress relief.
Abstract:
An assistive device structure for positioning and pressure relief is provided, including a first elastic layer and a second elastic layer, which are attached by using a high-frequency encapsulation process, sealing, bagging, thermoforming, or an integrally molding process. Each of the first and second elastic layers has a bottom surface and an arc surface disposed opposite to each other. The arc surface includes two protrusions and a recess formed there in between. The two protrusions have different heights. A hollow area is disposed in the recess of the first and second elastic layers. Based on such structure, the bottom surfaces of the first and second elastic layers are attached to form the proposed assistive device structure for a user to lean against and providing multiple positioning effects and pressure relief More than four axial directions of supporting forces are generated to effectively enhance muscle relaxation and stress relief.
Abstract:
An electric fan-type power generating device with low energy consumption includes a housing receiving an electric motor connected to a first fan. A generator is mounted in the housing and is connected to a second fan. The first and second fans are offset from each other. A power device includes a chargeable battery for supplying electricity to the electric motor that drives the first fan to generate wind power close to the second fan. Air flows around in a housing and generates turbulence to proceed with input and output of air, increasing the heat dissipating effect of the electric motor and the generator. Furthermore, the second fan drives the generator to generate electricity supplied to the chargeable battery. The chargeable battery recycles the electricity and supplies the electricity to the electric motor that operates to generate wind power. Furthermore, the wind energy drives the generator to continue generation of electricity.
Abstract:
An electric fan-type power generating device includes a housing receiving an electric motor that is supplied electricity from a chargeable battery to drive a first fan and a second fan to rotate at high speeds to thereby generate wind power close to a third fan mounted to a first generator. The first fan uses the wind power to drive the third fan in the housing. The third fan drives the first generator to generate electricity that is supplied to the chargeable battery. The second fan uses the wind power in the housing to drive a fourth fan to rotate. The fourth fan drives the second generator to generate electricity that is supplied to the chargeable battery. The chargeable battery recycles the electricity that supports operation of the electric motor for generating wind power. Furthermore, the wind power drives the first and second generators to continue generating electricity.
Abstract:
A power supply includes a housing receiving an electric motor, first and second fans, a generator, and a power device. The generator is concentrically mounted around the electric motor. When the electric motor is supplied with electricity from the power device and operates, a shaft of the electric motor drives the first fan to rotate, generating wind power close to the second fan. The second fan is rotated by the wind power in the housing and drives the second rotor and the second rotor seat to rotate. The first and second magnets create repulsive and attractive forces to provide inertia driving the second rotor seat, making the generator continuously supply electricity to the power device and the electric motor, thereby keeping the electric motor running to generate the wind power while the first fan continuously using the wind power to drive the second fan and the generator to generate electricity.