Abstract:
A powered sliding-door system of an automobile with a sliding-door drive device A and an automatic door closer B. The sliding-door drive device A has a case body 1 opening downward, a case cover 2 covering the opening of the case body 1. A pair of guide pulleys are rotatably supported by axes, and each axis stands on the front end and the rear end of the case in slanting posture. A loop of cable is arranged between the pair of guide pulleys so that a working side is arranged outside of the case body and a return side is arranged in the case body. The loop of cable is driven by an motor driven actuator 12.
Abstract:
Control systems including control circuitry and optional communications systems for operating a sliding power-operated member of an automotive vehicle. A powered sliding door in an automotive vehicle, such as a van, moves along a predetermined path of travel between a closed position and a fully open position relative to the body of the vehicle. Such a sliding door may be provided with one or more electrically-operated actuators for performing functions associated with the door, such as power opening and closing the door, power unlatching the door, power locking and unlocking the door, and power clamping and unclamping the door in a soft or low-momentum manner. The invention is directed toward improved control systems and circuitry for operating such power-sliding door systems. One such control system employs a wireless communications link between the door and body, which is preferably implemented using radio frequency communication signals containing digitally encoded control signals. Control circuitry is preferably provided in the body and the door of the vehicle for supervising and carrying out the foregoing functions in an orderly manner in response to requests generated locally at the door or remotely by the driver from the console of the vehicle. A second, simpler, control system provides electrically-actuated mechanisms for unlatching the door and operating the door lock without the use of either a wireless communication system or a retractable electrical cable interconnecting the sliding door to the vehicle body.
Abstract:
A power window device in which a drive pulley around which a wire to open and close a window is wound is disposed within a case of a power window drive section and a wire guide for guiding the wire is mounted on the case. The wire guide is composed of a first wire guide for guiding one end of the wire and a second wire guide for guiding the other end of the wire. The second wire guide is removably coupled to the first wire guide. A wire guide angle .theta..sub.0 between the wire guides can be changed merely by exchanging the second wire guide. Even when a different wire guide angle is required, the size of the component to be replaced can be reduced, as can the cost to manufacture.
Abstract:
A van door slidable in tracks (16, 18 and 20). An operating module is mounted inside the van adjacent center track 18. A front cable attached to drive pulley (144) extends through guide assembly (54) to hinge and roller assemble (26). A rear cable attached to drive pulley (136) extends through guide assembly (56) to hinge and roller assembly (26). The drive pulleys (136 and 144) each have a large diameter spiral cable groove (164), a small diameter cable groove (208) and a transition cable groove (210). A motor rotates the drive pulleys. The small diameter cable grooves drive the door when the door is in the forward portion of the tracks. The large diameter spiral cable grooves drive the door when the door is in the center and rear portions of the track. Fixed idler rollers (226 and 254) are positioned relative to the cable drive pulleys to insure that the total cable in the continuous cable loop is substantially the same when the cable is driven by the small diameter cable grooves as when the cable is driven by the large diameter spiral cable grooves. A cable tension system (220) maintains cable tension. A slack cable take-up pulley (174) on the drive pulley (136) takes up slack cable to set cable tension and is then locked in position.
Abstract:
The van (10) has a sliding door (14) mounted on rollers (22, 24 and 30) that are supported by and slidable in tracks (16, 18 and 20). An opening and closing module (50) is mounted inside the van adjacent to the center track (18). A front cable (74) is attached to the front cable drive pulley (144), and extends from the pulley through a front cable roller guide assembly (54) and is attached to the hinge and roller assembly (26). A rear cable (100) is attached to the rear cable drive pulley (136) and extends from the pulley through a rear cable roller guide assembly (56) and is attached to the hinge and roller assembly (26). The front and rear cable drive pulleys (136 and 144) each have a large diameter spiral cable groove (164), a small diameter cable groove (208) and a transition cable groove 210. A motor (126) rotates the front and rear cable drive pulleys to move the sliding door. The small diameter cable grooves (208) drive the sliding door (14) when the door is in the forward portion of the tracks. The large diameter spiral cable grooves (164) drive the sliding door when the door is in the center and rear portions of the tracks. Fixed idler rollers (226 and 254) guide the front and rear cables (74 and 100) to and from the cable drive pulleys (136 and 144).
Abstract:
A mechanism particularly well suited for converting bidirectional rotation, as of a reversible electric motor or a hand crank, into the linear up and down motion of a windowpane relative to the frame of a passenger car door. Included is an elongate guide rail gently curved longitudinally to conform to the vertical curvature of the vehicular door and providing a vertical guideway on its convex side. A wire rope or cable is looped about a pair of terminal guide pulleys or nonrotatable guides on the opposite ends of the guide rail. One of the two stretches of the cable is coupled to a windowpane carriage which is coupled to the windowpane for joint up and down movement therewith along the guideway. A drive mechanism including a drive reel is mounted to the guide rail and coupled to the other stretch of the cable for bidirectionally driving the windowpane carriage along the guideway. The drive mechanism is compactly disposed on the concave side of the guide rail for minimal space requirement.
Abstract:
A window regulator for operating a slidable window panel. The window regulator includes a drive drum mounted for rotation in a wire winding direction to wind a first wire having one end mounted on a window panel carrier and in a wire unwinding direction to unwind the first wire. A driven drum is mounted for rotation in a wire winding direction to wind a second wire having one end mounted to the carrier and in a wire unwinding direction to unwind the second wire. The drive and driven drums come into connection with each other for rotation of the driven drum in unison with the drive drum only when the drive drum rotates in its wire unwinding direction. A device is provided for making a connection between the drive and driven drums for rotation of the driven drum in unison with the drive drum in response to rotation of the drive drum in its wire winding direction.
Abstract:
The locking device comprises a rod and cooperates, on the one hand, with a ratchet wheel fixed onto the winch drum and, on the other hand, with a flap comprising a spring and which is maintained in the lowered position by a breaking pane, destruction of said breaking pane freeing the flap which under action of the spring raises the locking device whereby freeing the ratchet wheel and the winch drum of which the cable freely unrolls under action of a motor opening the dome shaped member.