Abstract:
There is provided a cell culture device, which includes a plurality of cell culture units, in which the cell culture unit includes: a cell culture tub that defines a culture space for cultivating cells, contains culture medium in the culture unit, and has an air layer above the culture medium; a drainage channel that is connected to the cell culture tub to discharge used culture medium to the integral drainage channel; an open culture medium reservoir that supplies new culture medium into the cell culture tub; and a droplet generator that is disposed between the cell culture tub and the open culture medium reservoir and supplies the culture medium from the open culture medium reservoir to the cell culture tub, using negative pressure of the air layer generated when the used culture medium is discharged.
Abstract:
A copper alloy includes Si to facilitate deoxidation, and can be easily manufactured even when including elements such as Cr or Sn. The copper alloy has high conductivity and high workability without negatively affecting the tensile strength. The copper alloy consists of 0.2 to 0.4 wt % of Cr, 0.05 to 0.15 wt % of Sn, 0.05 to 0.15 wt % of Zn, 0.01 to 0.30 wt % of Mg, 0.03 to 0.07 wt % of Si, with the remainder being Cu and inevitable impurities. A method for manufacturing the copper alloy includes obtaining a molten metal having the described composition; obtaining an ingot; heating the ingot at a temperature of 900-1000° C. to perform a hot rolling process; cold rolling; performing a first aging process at a temperature of 400-500° C. for 2 to 8 hours; cold rolling; and performing a second aging process at a temperature of 370-450° C. for 2 to 8 hours.
Abstract:
The present invention relates to a finger-motion detecting apparatus and method and includes a sensing unit to be disposed on a wrist of a subject person, said sensing unit being configured to output a measurement signal into the wrist of the subject person and to receive a reflected signal of the measurement signal according to the motion of tendons in the wrist of the subject person, a signal control unit configured to control whether the measurement signal is outputted and to adjust the measurement signal on the basis of the reflected signal, and a finger-motion recognizing unit configured to detect finger motion of the subject person from the reflected signal. According to the present invention, since a sensor capable of detecting finger motion is worn on a wrist, the problem of inconvenience in existing methods is resolved.
Abstract:
The present invention relates to a method of manufacturing a high purity copper (Cu) powder material useable in fabricating a sputtering target material for electronic industrial applications, for example a penetrator liner. The foregoing method has a configuration of using an apparatus composed of a raw material feeder, a plasma torch and a reactor to prepare a metal powder, and includes steps of passing a Cu powder having an average particle diameter of 30 to 450 μm through the thermal plasma torch at an introduction rate of 2 to 30 kg/hr. to thereby fabricate a Cu powder having an average particle diameter of 5 to 300 μm.
Abstract translation:本发明涉及制造用于制造用于电子工业应用的溅射靶材料的高纯度铜(Cu)粉末材料的方法,例如穿透衬套。 上述方法具有使用由原料供给器,等离子体焰炬和反应器构成的装置来制备金属粉末的结构,并且包括使平均粒径为30〜450μm的Cu粉末通过热 等离子体焰炬,导入速率为2〜30 kg / hr。 从而制造平均粒径为5〜300μm的Cu粉末。
Abstract:
An organic light-emitting diode (OLED) display apparatus, including a control unit to receive an image signal and to generate a frame-based image data signal and a frame identification signal based at least in part on the received image signal, the frame identification signal being synchronized with the frame-based image data signal, a driving voltage supply unit to generate a first voltage for a switching unit and a second voltage for a display unit, and a switching unit to receive the first voltage and the frame identification signal and to supply the first voltage for the display unit based at least in part on the frame identification signal.
Abstract:
A hydrogen generator and a method of operating the hydrogen generator. The hydrogen generator includes: a cylindrical reformer catalyst; and a cylindrical shift catalyst disposed inside of the reformer catalyst; a separation wall provided between the reformer catalyst and the shift catalyst; a cylinder that is disposed inside of the reformer catalyst, and comprises, on an outer surface thereof, a plurality of first nozzles to direct a plurality of flames to the reformer catalyst and a plurality of second nozzles to direct a plurality of flames to the shift catalyst; and a combustion fuel supply valve that selectively guides a combustion fuel to the first nozzles and or the second nozzles. The method includes heating the shift catalyst by supplying a combustion fuel to the second nozzles, making flames by igniting the combustion fuel that passes through the second nozzles, and directing the flames towards the shift catalyst, and stopping the heating of the shift catalyst by blocking the supply of the combustion fuel to the second nozzles when the temperature of the shift catalyst reaches the shift reaction temperature.
Abstract:
A system is disclosed that includes a first memory device operable according to either a first bit organization or a second bit organization, a second memory device operable according to only the first bit organization, and a central processing unit (CPU). The CPU is commonly connected to the first and second memory devices via a command/address bus, and is connected to the first memory device via a data bus separate from the command/address bus and having an upper half and a lower half. However, the CPU is connected to the second memory device via only the upper half of the data bus.
Abstract:
Disclosed is an apparatus and a method for improving the receive (Rx) sensitivity of a portable Radio Frequency IDentification (RFID). The portable RFID reader/writer is equipped with a variable phase shifter which is connected between an antenna and a directional coupler and then changes an impedance in the direction of the antenna in response to controlling a phase shift, a level of a reflection signal if a transmit (Tx) signal of the portable RFID reader/writer reflected by the antenna flows into an Rx path is measured, and then the phase shift of the variable phase shifter is controlled in such a manner as to minimize the measured level of the reflection signal. Therefore, calibration is implemented so that an antenna impedance changing in response to a position in which contact is made by a user's hand may have an adaptively optimal antenna reflection coefficient, thereby improving the Rx sensitivity.
Abstract:
Provided are an input buffer of a memory device, a memory controller, and a memory system making use thereof. The input buffer of a memory device is enabled or disabled in response to a first signal showing chip selection information and a second signal showing power down information, and the input buffer is enabled only when the second signal shows a non-power down mode and the first signal shows a chip selection state. The input buffer is at least one selected from the group consisting of a row address strobe input buffer, a column address strobe input buffer, and an address input buffer.
Abstract:
A fusing device includes a rotatable pressing roller, a fusing belt to rotate by a rotational force transmitted from the rotatable pressing roller, a nip forming member to contact an inner surface of the fusing belt to form a nip on a contact area between the rotatable pressing roller and the fusing belt, a heating member formed in approximately an internal central portion of the fusing belt to heat the nip forming member and the fusing belt, an inner support member formed within the fusing belt to press a nip part of the nip forming member toward the rotatable pressing roller, and an outer support member formed outside the fusing belt, and both ends of the outer support member being engaged with the inner support member to thereby reinforce the strength of the inner support member and form a path for radiation heat to disperse. The support unit includes an inner support member placed within the belt unit, and an outer support member placed outside the belt unit, both ends of the outer support member being engaged with the inner support member to reinforce the strength of the inner support member and to form a path for a radiation heat to disperse.