Abstract:
A semiconductor integrated circuit can include a first voltage pad, a second voltage pad, and a voltage stabilizing unit that is connected between the first voltage pad and the second voltage pad. The first voltage pad can be connected to a first internal circuit, and the second voltage pad can be connected to a second internal circuit.
Abstract:
There is provided an end-pumped vertical external cavity surface emitting laser (VECSEL) in which a pump laser beam is incident on a laser chip at a right angle. In the external cavity surface emitting laser, a laser chip package is provided with a laser chip emitting light at a first wavelength by optical pumping, an external mirror is spaced apart from a top surface of the laser chip package to transmit a portion of the light emitted from the laser chip to the outside and to reflect the remainder to the laser chip, a heat sink is coupled to the bottom surface of the laser chip package to discharge heat generated by the laser chip, and a pump laser faces a bottom surface of the heat sink to emit pump light at a second wavelength perpendicular to the laser chip.
Abstract:
A burning apparatus comprises at least one furnace, at least one conveyor to transfer a quartz tube containing at least one fluorescent bulb near the furnace, and a quartz tube holder for holding the quartz tube on the conveyor. The apparatus may further include a rotating device for rotating the quartz tube held by the quartz tube holder. The rotating device may include at least one roller that is in rolling contact with the quartz tube.
Abstract:
The present invention provides an organic anti-reflection coating composition comprising a copolymer represented by the following Formula 1, a light absorbent, a thermal acid generating agent, and a curing agent: wherein R1, R2 and R3 are each independent to each; R1 represents hydrogen or an alkyl group having 1 to 10 carbon atoms; R2 represents hydrogen, an alkyl group having 1 to 10 carbon atoms or an arylalkyl group having 1 to 20 carbon atoms; R3 is hydrogen or a methyl group; m and n are repeating units in the main chain, while m+n=1, and they have values of 0.05
Abstract translation:本发明提供一种有机防反射涂料组合物,其包含由下式1表示的共聚物,光吸收剂,热酸产生剂和固化剂:其中R1,R2和R3各自独立; R1表示氢或碳原子数1〜10的烷基。 R 2表示氢,碳原子数1〜10的烷基或碳原子数1〜20的芳烷基。 R3是氢或甲基; m和n是主链中的重复单元,而m + n = 1,并且它们具有0.05
Abstract:
The invention concerns an adhesive film for stacking chips which enables chips to be stacked in layers without using a separate spacer usually provided to keep a given distance between wires of an upper chip and a lower chip to have the same area. The adhesive film of the invention has an intermediate adhesive layer of thermoplastic phenoxy resin on both side of which a thermosetting adhesive layer of epoxy resin is placed, respectively, to make a three-layer structure, the thermoplastic phenoxy resin comprising UV curable small molecule compounds. The adhesive film of the invention is a multi-layered adhesive film produced by a method of comprising the steps of achieving compatibility on an interface between the thermosetting epoxy resin and thermoplastic phenoxy resin and then directly forming a phenoxy film of a high elastic modulus through UV curing in an adhesive film. With such a configuration, the adhesive film for stacking semiconductor chips according to the invention enables the semiconductor silicone chips to be stacked in 3 or more layers without using a separate spacer between chips in order to keep a wire distance between upper and lower chips in stacking the chips. With the configuration, it is advantageous that reliability of semiconductors is not lowered because adhesiveness is kept despite of a repeated process of stacking chips subject to high temperature.
Abstract:
A developing unit includes a developer feeding unit which feeds developer to an image receptor, a casing which supports the developer feeding unit and includes a developer storing part provided in an area to face the developer feeding unit and to store the developer, and a developer feeding plate which is formed with a developer flowing hole through which the developer flows, and is provided to move between the developer storing part and the developer feeding unit.
Abstract:
In a plasma display device and a driving method thereof, a switch for applying a voltage rising waveform to a scan electrode during an idle period and a first period is coupled between the scan electrode and a power source. The switch applies the voltage rising waveform having a first slope by being repeatedly turned on/off according to a first control signal during the idle period, and/or the switch applies the voltage rising waveform having a second slope (having a higher gradient than the first slope) by being repeatedly turned on/off according to a second control signal during the first period. As such, the scan electrode voltage is increased with the first slope during the idle period to perform a more stable reset operation. Also, when the idle period does not exist, the voltage of the scan electrode is increased within the first period to enable a normal reset operation.
Abstract:
The VECSEL includes: a heat spreader dissipating generated heat; a laser chip that is disposed on the heat spreader and is excited by a pump beam of a predetermined wavelength to emit a beam of a first wavelength; a Second Harmonic Generation (SHG) crystal that is disposed on the laser chip or the heat spreader and converts the laser beam of the first wavelength emitted from the laser chip into a beam having a second wavelength that is one-half the first wavelength; and a planar external cavity mirror that is directly formed on the SHG crystal and has a predetermined transmittance with respect to the beam of the second wavelength.
Abstract:
The present invention provides a flat fluorescent lamp. The flat fluorescent lamp comprises a single plate. Consequently, the flat fluorescent lamp is structurally safe, brightness of the flat fluorescent lamp is high, and efficiency of the flat fluorescent lamp is also high without the provision of other additional optical components. The present invention also provides a method of manufacturing such a flat fluorescent lamp.
Abstract:
A semiconductor device and method thereof. The example method may include forming a semiconductor device, including forming a first layer on a substrate, the first layer including aluminum nitride (AlN), forming a second layer by oxidizing a surface of the first layer and forming a third layer on the second layer, the first, second and third layers each being highly oriented with respect to one of a plurality crystallographic planes. The example semiconductor device may include a substrate including a first layer, the first layer including aluminum nitride (AlN), a second layer formed by oxidizing a surface of the first layer and a third layer formed on the second layer, the first, second and third layers each being highly oriented with respect to one of a plurality crystallographic planes.