Abstract:
This invention pertains to a composition for a dielectric thin film, which is capable of being subjected to a low-temperature process. Specifically, the invention is directed to a metal oxide dielectric thin film formed using the composition, a preparation method thereof, a transistor device comprising the dielectric thin film, and an electronic device comprising the transistor device. The electronic device to which the dielectric thin film has been applied exhibits excellent electrical properties, thereby satisfying both a low operating voltage and a high charge mobility.
Abstract:
Disclosed are a copolymer of a perfluoropolyether derivative and a photosensitive polymer, a composition for forming banks comprising the copolymer, and a method for forming banks using the composition. Also disclosed is an organic thin film transistor including the composition and an electronic device including the organic thin film transistor. The use of the copolymer may enable the formation of banks by a solution coating process. Because an organic thin film transistor including banks formed by the method may be fabricated without any degradation in the characteristics of the organic thin film transistor, improved electronic properties may be exhibited.
Abstract:
A thin film transistor (“TFT”) includes a poly silicon layer formed on a flexible substrate and including a source region, a drain region, and a channel region, and a gate stack formed on the channel region of the poly silicon layer, wherein the gate stack includes first and second gate stacks, and a region of the poly silicon layer between the first and second gate stacks is an off-set region. A method of manufacturing the TFT is also provided.
Abstract:
Disclosed are an organic insulating film composition for use in the formation of an insulating film having a dual thickness using the hydrophilic/hydrophobic difference between a substrate and a gate electrode, and a method of manufacturing an organic insulating film having a dual thickness using the same. In a display device using a thin film transistor including the organic insulating film of example embodiments, flickering caused by parasitic capacitance may be decreased, and thus reliability may be increased, enabling a simpler manufacturing process and decreased manufacturing cost.
Abstract:
Disclosed is a method for forming banks during the fabrication of electronic devices incorporating an organic semiconductor material that includes preparing an aqueous coating composition having at least a water-soluble polymer, a UV curing agent and a water-soluble fluorine compound. This coating composition is applied to a substrate, exposed using UV radiation and then developed using an aqueous developing composition to form the bank pattern. Because the coating composition can be developed using an aqueous composition rather than an organic solvent or solvent system, the method tends to preserve the integrity of other organic structures present on the substrate. Further, the incorporation of the fluorine compound in the aqueous solution provides a degree of control over the contact angles exhibited on the surface of the bank pattern and thereby can avoid or reduce subsequent surface treatments.
Abstract:
Example embodiments of the present invention relate to an organic-inorganic hybrid polymer having capped terminal hydroxyl groups and an organic insulator composition including the hybrid polymer and methods thereof. The organic-inorganic hybrid polymer may be prepared by capping terminal hydroxyl groups of silanol moieties that do not participate in the formation of an intermolecular network in an organic-inorganic hybrid material, with an organosilane compound. The organic-inorganic hybrid polymer may increase the hysteresis and physical properties of an organic thin film transistor. The organic-inorganic hybrid polymer may be more effectively utilized in the manufacture of liquid crystal displays (LCDs).
Abstract:
A photosensitive metal nanoparticle and a method of forming a conductive pattern using the same, wherein a self-assembled monolayer of a thiol compound or isocyanide compound having a terminal reactive group is formed on a surface of the metal nanoparticle and a photosensitive group is introduced to the terminal reactive group. The photosensitive metal nanoparticles can easily form a conductive film or pattern having excellent conductivity upon exposure to UV, and thus can be applied for antistatic washable sticky mats or shoes, conductive polyurethane printer rollers, electromagnetic interference shielding, etc.
Abstract:
Disclosed herein is an organic thin film transistor comprising a substrate, a gate electrode, a gate insulating layer, an organic semiconductor layer, source-drain electrodes and a protective layer wherein a buffer layer is interposed between the organic semiconductor layer and the protective layer. Such a transistor minimizes the deterioration in the performance of the transistor due to ambient air containing oxygen and moisture, and the degeneration in the performance of the transistor caused during mounting a display device.