Abstract:
A process for making styrene is disclosed that includes reacting toluene with a C1 source and a co-feed in the presence of a catalyst in a reactor to form a first product stream comprising styrene, ethylbenzene, carbon monoxide, and hydrogen; separating the hydrogen and carbon monoxide from the first product stream to form a second stream; separating the hydrogen from the second stream to form a third stream comprising hydrogen and a fourth stream comprising carbon monoxide; wherein the fourth stream is recycled to the reactor and forms at least a portion of the co-feed.
Abstract:
A method of making a foamable polystyrene composition includes combining a styrenic monomer and a co-monomer containing a polar functional group to obtain a mixture, subjecting the mixture to polymerization to obtain a styrenic co-polymer, and combining the styrenic co-polymer with a blowing agent in a foaming process to obtain foamed articles.
Abstract:
Cellular and multi-cellular polystyrene and polystyrenic foams and methods of forming such foams are disclosed. The foams include an expanded polystyrene formed from expansion of an expandable polystyrene including an adsorbent comprising alumina, wherein the multi-cellular polystyrene exhibits a multi-cellular size distribution. The process for forming a foamed article includes providing a formed styrenic polymer and contacting the formed styrenic polymer with a first blowing agent and an adsorbent comprising alumina to form extrusion polystyrene. The process further includes forming the extrusion styrenic polymer into an expanded styrenic polymer and forming the expanded styrenic polymer into a foamed article.
Abstract:
A group V metal/rhenium-modified molecular sieve catalyst can be used in hydrocarbon conversion reactions. Embodiments can provide a toluene conversion of at least 30 wt % with selectivity to benzene above 40 wt % and to xylenes above 40 wt % and non-aromatics selectivity of less than 2.0 wt %.
Abstract:
A high impact polystyrene (HIPS) is made from styrene monomer and 3 to 20 wt % of an elastomeric component phase including polybutadiene rubber and styrene butadiene copolymer. The HIPS has a 60 degree gloss of 90 or more, a Gardner drop of at least 10 in-lb, and an Izod impact strength of 1.8 ft-lb/in or more. The HIPS can have salami morphology with rubber particle size between 1 and 1.3 microns.
Abstract:
A process for making styrene is disclosed that includes providing toluene, a co-feed, and a C1 source to a reactor containing a catalyst, reacting toluene with the C1 source in the presence of the catalyst and the co-feed to form a product stream containing ethylbenzene and styrene. The co-feed can be selected from the group of water, carbon monoxide, hydrogen, and combinations thereof.
Abstract:
A process is disclosed for making styrene by converting methanol to formaldehyde in a reactor then reacting the formaldehyde with toluene to form styrene in a separate reactor.
Abstract:
A process for the coupling of hydrocarbons and utilizing the heat energy produced by the reaction is disclosed. In one embodiment the process can include reacting methane with oxygen to form a product stream containing ethane and further processing the ethane to ethylene in an existing ethylene production facility while using the heat energy produced by the reaction within the facility.
Abstract:
A method for the oxidative coupling of hydrocarbons, such as the oxidative coupling of methane to toluene, includes providing an oxidative catalyst inside a reactor, and carrying out the oxidative coupling reaction under a set of reaction conditions. The oxidative catalyst includes (A) at least one element selected from the group consisting of the Lanthanoid group, Mg, Ca, and the elements of Group 4 of the periodic table (Ti, Zr, and Hf); (B) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements of Group 3 (including La and Ac) and Groups 5-15 of the periodic table; (C) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements Ca, Sr, and Ba; and (D) oxygen.
Abstract:
Disclosed is a method of making a polystyrene based nanocomposite by combining a monomer with a nanoparticle to form a mixture and subjecting the mixture to polymerization conditions to produce a polymeric composite. In an embodiment the nanoparticle has been treated with an additive prior to combining with the monomer and the additive contains a silane moiety.