Abstract:
Embodiments described herein include a receiver, a method, and a plurality of high-pass filters for demodulating a radio frequency (RF) signal. An example receiver includes a plurality of high-pass filters. The receiver includes a demodulator configured to demodulate an RF signal received at an input of the demodulator and configured to output a demodulated signal. The receiver also includes a plurality of high-pass filters connected to an output of the demodulator. The plurality of high-pass filters are configured to receive the demodulated signal and configured to high-pass filter the demodulated signal. The plurality of high-pass filters are configured to operate with a first set of filter responses during a first time period of the demodulated signal and configured to operate with a second set of filter responses during a second time period of the demodulated signal.
Abstract:
An antenna arrangement for transmitting energy is described. The antenna arrangement includes a planar array of two or more rectangular loop antennas, adapted to transmit energy at low frequencies via non-radiative resonant coupling and at high frequencies via radiative coupling. The low frequencies correspond to a wavelength with half of the wavelength being larger than the longest rectangular loop antenna dimension and the high frequencies correspond to a wavelength with half of the wavelength being approximately equal the longest rectangular loop antenna dimension. The antenna arrangement also includes a feeding network connected to the planar array, which includes a phase shifting means for providing a phase difference between signals at the high frequencies to be transmitted by different rectangular loop antennas of the planar array, whereby the amount of phase difference is related to the distance of the rectangular loop antennas to a focal point in the near-field of the planar array. The antenna arrangement also includes means adapted for distributing the signals applied to the feeding network.
Abstract:
An electronic system for estimating a subject's blood pressure, comprising a feature extraction module configured for receiving a subject's photoplethysmogram signal, detecting a plurality of signal characteristic points on the received photoplethysmogram signal, calculating a plurality of distances in both time and amplitude between any two of the detected photoplethysmogram signal characteristic points, and providing a feature information signal comprising information about the calculated distances; and a blood pressure calculation module configured for receiving the photoplethysmogram signal, the feature information signal and anthropometric characteristics of the subject, and calculating systolic, diastolic and continuous mean blood pressure values of the subject.
Abstract:
The disclosure relates to a sensor, a system, and a holder arrangement for biosignal activity measurement. One example embodiment includes a sensor module for brain activity measurement. The sensor module includes a main electrode base. The sensor module also includes a plurality of pins protruding from the main electrode base. The plurality of pins is arranged such that, when applied on a subject, the pins make contact with skin of the subject or are in close proximity with the skin of the subject. The main electrode base comprises electronic circuitry for near infrared spectroscopy (NIRS) measurements and electronic circuitry for electroencephalography (EEG) measurements, both connected to the plurality of pins. The plurality of pins includes electrically conductive pins. The plurality of pins also includes at least one source waveguide pin configured for light emitting purposes or at least one detector waveguide pin configured for light detection purposes.
Abstract:
The present disclosure relates to a front-end system for a radio device. In one example, a front-end system comprises a converter, the converter comprising a mixer configured for down-converting a radio frequency signal into a baseband signal by using a local oscillator signal generated by a signal generator, and characterized in that, the converter further comprises a quantizer arranged for quantizing the baseband signal into a digital signal. Further, the signal generator may be configured for generating, based on the digital signal, the local oscillator signal such that it is synchronized with the radio frequency signal.
Abstract:
The disclosure relates to a data communication network connecting a plurality of computation clusters. The data communication network is arranged for receiving via N data input ports, N>1, input signals from first clusters of the plurality and for outputting output signals to second clusters of the plurality via M data output ports, M>1. The communication network includes a segmented bus network for interconnecting clusters of the plurality and a controller arranged for concurrently activating up to P parallel data busses of the segmented bus network, thereby forming bidirectional parallel interconnections between P of the N inputs, P
Abstract:
The present disclosure relates to a circuit that includes an input port for applying a sinusoidal input signal, and a first buffering means for converting the sinusoidal input signal into a square wave signal. A DC level of the square wave signal may be defined by an adjustable threshold voltage level. The circuit also includes an output port for outputting the square wave signal to a power amplifier. Further, the circuit includes a feedback loop having a low pass filtering means arranged for filtering the square wave signal and comparing means arranged for comparing a DC level of a filtered signal received from the low pass filtering means with a pre-set reference level. The reference level may be selected for cancelling a given harmonic component. The comparing means is further arranged for outputting to the first buffering means a correction signal for adjusting the threshold voltage level of the first buffering means.
Abstract:
The present disclosure relates to a method of managing the operation of a digital synchronous electronic system with a guaranteed lifetime, using digital processing means. The method comprises: monitoring the electronic system at run time, while the electronic system executes a set of application tasks currently running on the electronic system in a current system working mode; detecting a violation in at least one parameter of the electronic system, the violation affecting one or more guaranteed objectives or one or more cost functions; selecting at least one condition to revise the current system working mode of the electronic system; and based on the at least one condition, selecting a revised system working mode to continue execution of the set of application tasks.
Abstract:
An electronic system for estimating a subject's blood pressure, comprising a feature extraction module configured for receiving a subject's photoplethysmogram signal, detecting a plurality of signal characteristic points on the received photoplethysmogram signal, calculating a plurality of distances in both time and amplitude between any two of the detected photoplethysmogram signal characteristic points, and providing a feature information signal comprising information about the calculated distances; and a blood pressure calculation module configured for receiving the photoplethysmogram signal, the feature information signal and anthropometric characteristics of the subject, and calculating systolic, diastolic and continuous mean blood pressure values of the subject.
Abstract:
According to one aspect of the inventive concept there is provided a system for monitoring incontinence comprising: a urine sensitive circuit arranged to present a changed electrical characteristic when exposed to urine; a measurement circuit arranged to perform a measurement on a urine bladder of a wearer to determine at least one parameter which varies with a fill level of the urine bladder; a sensor arranged to determine an orientation and/or a movement of the sensor; and a processing circuit arranged to: determine whether the urine sensitive circuit has been exposed to urine; estimate an amount of urine released on to the urine sensitive circuit; andin response to determining that the urine sensitive circuit has been exposed to urine, record data representing said at least one parameter determined by the measurement circuit, an estimated movement and/or posture of the wearer based on an orientation and/or a movement determined by the sensor, and an estimate of the amount of urine released on to the urine sensitive circuit.