Abstract:
Methods are provided for partial aortic obstruction for cerebral perfusion augmentation in patients suffering from global or focal cerebral ischemia. Alternatively, the methods can be used to partially obstruct aortic blood flow to condition the spinal cord to secrete neuroprotective agents prior to abdominal aortic aneurysm repair. Partial obstruction of a vessel can be accomplished by a device comprising an elongate catheter and a distally mounted expandable member. The expandable member may comprise one or two balloons. Other medical devices, such as an angioplasty, stent, or atherectomy catheter, can be inserted distal the expandable member to provide therapeutic intervention.
Abstract:
Closed loop heat exchange catheters having bi-directional flow heat exchange regions and their methods of manufacture and use. The heat exchange region may be formed of expandable or non-expandable tubular conduit(s) that are configured in a series of loops or coiled configuration defining a supply flow path and a return flow path through which heat exchange medium is circulated. The individual loops of convolutions of the coiled configuration may be the same or different size. In some embodiments, the tubular conduit(s) may be passed through generally transverse bore holes formed in a catheter shaft so that the loops or convolutions of protrude from the catheter shaft.
Abstract:
A balloon catheter is used in a closed-loop heat exchange system for manipulating the temperature of a patient. The balloon catheter is positioned in the stomach of the patient, and then expanded with a heat exchange fluid delivered through a lumen formed in the shaft of the catheter. The balloon catheter comes into contact with the wall of the stomach, and the stomach substantially conforms around the expanded balloon catheter. The heat exchange fluid is allowed to flow continuously into and out of the balloon catheter. Heat is exchanged between the balloon catheter and the stomach so as to controllably alter the temperature of at least a portion of the patient. Anti-shivering mechanisms and automatic control based on temperature feedback from the patient may be used in connection with the heat exchange system.
Abstract:
Devices and methods for performing CPR on a patient within an imaging field of an imaging device. The device has a compression belt and a belt tensioning mechanism, both located on or in the device such that the head, neck, thorax and abdomen of the patient may be place within the imaging field with the compression belt installed about the patient and the belt tensioning mechanism will be located outside of the imaging field.
Abstract:
A system and method for determining CPR induced chest compression depth using two sensors while accounting for different orientations of the two sensors.
Abstract:
A cooling system for an indwelling heat exchange catheter includes a heat exchange bath that is configured to receive a conduit that carries saline to and from the catheter. A heating/cooling fluid is in the bath and exchanges heat with the saline. The heating/cooling fluid flows through a heat exchanger that includes a refrigerant and two variable speed DC compressor for removing heat from the refrigerant. A gear pump circulates the working fluid to and from the catheter and is removably engaged with a pump support platform.
Abstract:
Devices, systems and methods for treating disorders characterized by low cardiac output. The devices, systems and methods use intra-aortic balloon counterpulsation in combination with hypothermia of all or a portion of a human or veterinary patient's body to improve coronary perfusion and cardiac output. To effect the hypothermia, a heat exchange catheter may be positioned in the a patient's vasculature separately from the intra-aortic balloon counterpulsation catheter. Alternatively, a combination Intra-aortic balloon counterpulsation/heat exchange catheter may be utilized. Such combination catheter comprises a) a catheter sized for insertion into the aorta, b) a counterpulsation balloon and c) a heat exchanger. A drive/control system receives temperature and electrocardiograph signals and drives the inflation/deflation of the counterpulsation balloon as well as the heating/cooling of the heat exchanger.
Abstract:
Methods and apparatuses for temperature modification of a patient, or selected regions thereof, including an induced state of hypothermia. The temperature modification is accomplished using an in-dwelling heat exchange catheter within which a fluid heat exchange medium circulates. A heat exchange cassette is attached to the circulatory conduits of the catheter, the heat exchange cassette being sized to engage a cavity within a control unit. The control unit includes a heater/cooler device for providing heated or cooled fluid to a heat exchanger in thermal communication with the fluid heat exchange medium circulating to the heat exchange catheter, a user input device, and a processor connected to receive input from various sensors around the body and the system. A temperature control scheme for ramping the body temperature up or down without overshoot is provided.
Abstract:
A mechanical chest compression device is secured to a gurney, transport stretcher or ambulance cot while engaging a patient's thorax to provide mechanical CPR during transport. The mechanical chest compression device compresses the patient's thorax against the gurney deck. The mechanical chest compression device may engage the side rails on the gurney, the gurney deck or any suitable structural elements of the gurney.