Abstract:
A semiconductor device may include a substrate and an insulating layer formed on the substrate. A first device may be formed on the insulating layer, including a first fin. The first fin may be formed on the insulating layer and may have a first fin aspect ratio. A second device may be formed on the insulating layer, including a second fin. The second fin may be formed on the insulating layer and may have a second fin aspect ratio different from the first fin aspect ratio.
Abstract:
A method forms fin structures for a semiconductor device. The method includes forming a first fin structure including a dielectric material and including a first side surface and a second side surface; forming a second fin structure adjacent the first side surface of the first fin structure; and forming a third fin structure adjacent the second side surface of the first fin structure. The second fin structure and the third fin structure are formed of a different material than the first fin structure.
Abstract:
A method of forming a gate for a Fin Field Effect Transistor (FinFET) is provided. The method includes forming a first layer of material over a fin and forming a second layer over the first layer. The second layer includes either Ti or TiN. The method further includes forming a third layer over the second layer. The third layer includes an anti-reflective coating. The method also includes etching the first, second and third layers to form the gate for the FinFET.
Abstract:
Methods are provided for cryopreserving plant cells and to methods for recovering viable plant cells from long or short term cryopreservation. Plant cells to be cryopreserved can be grown in culture and pretreated with a solution containing an cryorotective agent and a stabilizer. Pretreated cells are acclimated to a reduced temperature and loaded with a cryoprotective agent such as DMSO, propylene glycol or polyethylene glycol. Loaded cells are incubated with a vitrification solution which, for example, comprises a solution with a high concentration of the cryoprotective agent. Vitrified cells retain less than about 20% water content and can be frozen at cryopreservation temperatures for long periods of time without significantly altering the genotypic or phenotypic character of the cells. Plant cells may also be cryopreserved by lyophilizing cells to a preferable water content of about 40% to about 60% by weight prior to exposure to a vitrification solution or loading agent. The combination of lyophilization and vitrification or loading removes about 75% to about 95% of the plant cell's water. Cells can be successfully cryopreserved for long periods of time and viably recovered. Also provided are methods for the recovery of viable plant cells from cryopreservation. Cells are thawed to about room temperature and incubated in medium containing, a cryoprotective agent and a stabilizer. The cryoprotective agent is removed and the cells successfully incubated and recovered in liquid or semi-solid growth medium.
Abstract:
A method for fabricating a semiconductor device, involving: forming a gate stack on a substrate; depositing a material layer on the gate stack; etching the material layer, thereby forming a dielectric capsulate layer on the gate stack; forming a pair of shallow source/drain extensions in a first region of the substrate by implanting a plurality of first dopant ions at a tilt angle with a horizontal offset defined by a thickness of the dielectric capsulate layer; and forming at least one spacer on the dielectric capsulate layer; forming deep source/drain contact junctions in a second region of the substrate by vertically implanting a plurality of second dopant ions below the first region with no tilt and with a horizontal offset defined by a thickness of the at least one spacer.
Abstract:
A semiconductor device and method of fabrication are disclosed. The semiconductor device includes a liner composed of a high-K material. The liner has a portion separating a sidewall spacer from a gate and a portion separating the sidewall spacer from a layer of semiconductor material. The liner functions as an etch stop during formation of the sidewall spacer. The liner is removable by an etch process that has substantially no reaction with an isolation region formed in the layer of semiconductor material.
Abstract:
Short-channel effects are controlled by forming abrupt, graded halo profiles. Embodiments include sequentially forming deep source/drain regions, ion implanting to form first deep amorphized regions, ion implanting an impurity into the first deep amorphized regions to form first deep halo implants, laser thermal annealing to recrystallize the first deep amorphized regions and activate the deep halo regions, ion implanting to form second shallow amorphized regions within the deep halo regions, ion implanting an impurity into the second shallow amorphous regions to form second shallow halo implants and laser thermal annealing to recrystallize the second shallow amorphous regions and to activate the shallow halo regions. Embodiments further include forming shallow source/drain extensions within the shallow halo implants and laser thermal annealing to activate the shallow source/drain extensions.
Abstract:
A semiconductor device may include a substrate and an insulating layer formed on the subtrate. A fin may be formed on the insulating layer and may include a number of side surfaces and a top surface. A first gate may be formed on the insulating layer proximate to one of the number of side surfaces of the fin. A second gate and may be formed on the insulating layer separate from the first gate and proximate to another one of number of side surfaces of the fin.
Abstract:
A method of fabricating a semiconductor device, having a locally-formed metal oxide high-k gate insulator, involving: nitriding a substrate to form a thin silicon nitride layer; depositing a thin metal film on the thin silicon nitride layer; forming a localized metal oxide layer from the thin metal film, wherein the a thick nitride layer is deposited on the thin metal film, the thick nitride layer is patterned, the at least one exposed thin metal film portion is locally oxidized, by heating, wherein the oxidizing is performed by local laser irradiation; forming a gate stack having the localized metal oxide layer and a gate electrode, wherein the a thick gate material is deposited in the electrode cavity and on the localized metal oxide layer; the thick gate material is polished, thereby forming the gate electrode; and the thick nitride layer along with the at least one covered thin metal film portion are removed, thereby forming the gate stack; and completing fabrication of the device, and a device thereby formed.
Abstract:
A semiconductor wafer including an NMOS device and a PMOS device. The NMOS device is formed to have a high-K gate dielectric and the PMOS device is formed to have a standard-K gate dielectric. A method of forming the NMOS device and the PMOS device is also disclosed.