Abstract:
A wound healing system for promoting healing of a wound of a patient includes a positive pressure source, a reduced pressure source, and a porous foam positioned in contact with the wound. The porous foam includes a plurality of flow channels in fluid communication with the reduced pressure source. The system further includes a filler member having a flexible wall defining an interior chamber. The interior chamber is in fluid communication with the positive pressure source, and a cover member is positioned over the filler member.
Abstract:
Systems, methods, and apparatuses for forming a multi-function core for a dressing are described. The multi-function core includes a contact layer configured to be positioned adjacent to a tissue site, a wicking layer adjacent to the contact layer, an ion exchange layer adjacent to the wicking layer, an absorbing layer adjacent to the ion exchange layer, a blocking layer adjacent to the absorbing layer, and an odor-absorbing layer adjacent to the blocking layer. The contact layer, the wicking layer, the ion exchange layer, the absorbing layer, the blocking layer, and the odor-absorbing layer are coextensive and formed from a plurality of fibers disposed in a fibrous web. Methods of manufacturing the multi-function core are also described.
Abstract:
A dressing may be suitable for use with systems and methods for treating a tissue site. Embodiments of the dressing may include a base layer, an adhesive, a sealing member, a first wicking layer, a second wicking layer, and an absorbent layer. The base layer may have a plurality of apertures and may be adapted to cover the tissue site. The adhesive may be positioned between the sealing member and the base layer such that the sealing member and the base layer define an enclosure. The first and the second wicking layer may each be disposed in the enclosure with the absorbent layer positioned between the first and the second wicking layer. Other dressings, systems, and methods are disclosed.
Abstract:
A reduced pressure tissue treatment system includes an applicator having an aperture, a first pad section, and a second pad section substantially covering the aperture and positioned substantially adjacent the first pad section. A fabric layer is located at least partially between the second pad section and the drape, and the fabric layer includes a woven or non-woven fabric made from a fiber material. A drape substantially covers the first pad section, the second pad section, the fabric layer, and the applicator. A reduced pressure source is in fluid communication with at least one of the first pad section and the fabric layer for providing reduced pressure to the aperture.
Abstract:
A reduced pressure treatment system includes a control unit having a control system and a reduced pressure source. The reduced pressure treatment system further includes a manifold unit in fluid communication with the reduced pressure source and a component module to augment treatment. The component module is configured to communicate with the control system of the control unit, and the component module includes a first mounting region configured to be coupled to a complimentary mounting region of the control unit. The component module further includes a second mounting region identical to the complimentary mounting region of the control unit to allow a second component module to be coupled to the first component module.
Abstract:
Systems, methods, and dressings for treating a linear wound, such as an incision, on a patient are presented. The systems, dressings, and methods involve a sealed wound dressing assembly that helps form a fluid seal around the linear wound while simultaneously encompassing a subcutaneous delivery conduit to deliver fluid to or from a subcutaneous tissue site. In one instance, a reduced-pressure interface is used to allow the subcutaneous delivery conduit to pass through tissue at or near the linear wound and through a wound dressing assembly to a drainage receptacle.
Abstract:
The present invention generally relates to devices and systems that utilize an inflatable bladder for generating, cutting, capturing, and/or transplanting one or more skin blisters. In some aspects, methods and devices in accordance with the present teachings can enable the harvesting of skin grafts from an increased variety of potential donor sites, such as areas of the body having uneven surfaces or a smaller radius of curvature (e.g., the arm) or large area donor sites where the creation of a vacuum may require a high power negative pressure source. In various aspects, systems, devices, and methods in accordance with the present teachings can also enable the efficient transplant of the grafts directly from the skin graft harvester to the recipient site without the transfer of the grafts generated by the harvester to another substrate prior to transplantation.
Abstract:
A reduced pressure dressing for applying reduced pressure treatment to a tissue site includes an interface layer adapted to be positioned at the tissue site. An absorbent layer is in fluid communication with the interface layer to absorb liquid from at least one of the interface layer and the tissue site. A pump is in fluid communication with the absorbent layer to deliver a reduced pressure to the tissue site. A cover is positioned over the pump, the absorbent layer, and the interface layer to maintain the reduced pressure at the tissue site, and a liquid-air separator is positioned between the absorbent layer and the pump to inhibit liquid from entering the pump.
Abstract:
A reduced pressure treatment system includes a reduced pressure source and a reduced pressure dressing. The dressing includes an interface layer adapted to be positioned at a tissue site and an absorbent layer in fluid communication with the interface layer to absorb liquid from at least one of the interface layer and the tissue site. A diverter layer is positioned adjacent the absorbent layer, and the diverter layer includes a plurality of apertures in fluid communication with the absorbent layer to distribute a reduced pressure to the absorbent layer. A cover is positioned over the diverter layer to maintain the reduced pressure at the tissue site.
Abstract:
Provided are systems, dressings, and methods suitable for treating a tissue site, such as an incision or linear wound. The systems, dressings, and methods relate to a dressing assembly that may include a dressing bolster and a sealing ring. The sealing ring may be adapted to provide a fluid seal around the tissue site, and to absorb fluids from the tissue site. In some embodiments, the sealing ring may be extruded around the tissue site. In other embodiments, the sealing ring may be coupled to the dressing bolster. Other systems, apparatuses, and methods are disclosed.