Abstract:
Electronic devices may be provided with backlight structures that provide backlight illumination for a display. The backlight structures include a light source such as an array of light-emitting diodes that launches light into an edge of a light guide plate. The light guide plate distributes the light laterally across display layers in the display. One or more optical films such as brightness enhancement films and diffuser layers are interposed between the display layers and the light guide plate. The light guide plate includes light guide plate alignment features that mate with corresponding optical film alignment features in the optical films. The light guide plate alignment features may be protrusions that extend into openings such as notches or holes in the optical films. The light guide plate may have a protruding portion that extends around a periphery of the light guide plate and surrounds a perimeter of the optical films.
Abstract:
The described embodiments relate generally to liquid crystal displays (LCDs), and more particularly to methods for extending a glass portion of a display to an edge of a display housing. In one embodiment, a thin cover glass layer is provided between a color filter glass layer and an upper polarizer. The thin cover glass layer is supported along an edge of the display by a filler material that can include a foam dam and a glass spacer or adhesive filler. The filler material allows the cover glass layer to be supported without damaging any drivers or circuits located on an underlying thin film transistor glass layer. In another embodiment, a glass spacer circuit with integrated drivers and circuitry on its lower surface can support the cover glass along the edge of the display.
Abstract:
Electronic devices may be provided with display structures such as glass and polymer layers in a liquid crystal display. The glass layers may serve as substrates for components such as a color filter layer and thin-film transistor layer. The polymer layers may include films such as a polarizer film and other optical films. During fabrication of a display, the polymer layers and glass layers may be laminated to one another. Portions of the polymer layers may extend past the edges of the glass layers. Laser cutting techniques may be used to trim away excess portions of the polymer layer that do not overlap underlying portions of the glass layers. Laser cutting may involve application of an adjustable infrared laser beam.
Abstract:
An electronic device may have a display. Inactive portions of the display such as peripheral portions of the display may be masked using an opaque masking layer. An opening may be provided in the opaque masking layer to allow light to pass. For example, a logo may be viewed through an opening in the opaque masking layer and a camera may receive light through an opening in the opaque masking layer. The display may include upper and lower polarizers, a color filter layer, and a thin-film transistor layer. The opaque masking layer may be formed on the upper polarizer, may be interposed between the upper polarizer and the color filter layer, or may be interposed between the color filter layer and the thin-film transistor layer. The upper polarizer may have unpolarized windows for cameras, logos, or other internal structures.
Abstract:
A display may have a pixel array such as a liquid crystal pixel array. The pixel array may be illuminated with backlight illumination from a direct-lit backlight unit. The backlight unit may include an array of light-emitting diodes (LEDs) on a printed circuit board. The display may have a notch to accommodate an input-output component. Reflective layers may be included in the notch. The backlight may include a color conversion layer with a property that varies as a function of position. The light-emitting diodes may be covered by a slab of encapsulant with recesses in an upper surface.
Abstract:
Front-of-screen performance of the electronic display may be highly sensitive to timing settings of emission and anode reset frequencies. Changes in the timing settings may result in diverging brightness and color performance on the electronic display, which may negatively impact user experience. In some cases, emission frequency of the self-emissive display pixels may be fixed at a value, such as 120 Hertz (Hz), 240 Hz, or 480 Hz. The anode reset frequency may be set at a divisor of the emission frequency. Some refresh rates may be divisors of the pixel emission frequency. However, other refresh rates may not be divisors of the pixel emission frequency. For such non-divisor refresh rates, different driving schemes may be used to compensate for a difference from the pixel emission frequency.
Abstract:
A display may include an array of pixels covered by lenticular lenses. The lenticular lenses may cause expansion of light primarily in a horizontal direction. To improve the perceived resolution of the display, the horizontal resolution of the pixels on the display may be increased. In one possible layout, each pixel includes one red sub-pixel, one blue sub-pixel, and one green sub-pixel. The sub-pixels may be non-square rectangular. The sub-pixels may be the same size or may have the same widths and different heights. Each pixel may be asymmetric about a horizontal axis. In a given row, the pixels may alternate between first and second layouts. The second layout may be a vertically flipped version of the first layout.
Abstract:
A display may have a pixel array such as a liquid crystal pixel array. The pixel array may be illuminated with backlight illumination from a direct-lit backlight unit. The backlight unit may include an array of light-emitting diodes on a printed circuit board. The backlight unit may include first, second, and third light spreading layers formed over the array of light-emitting diodes. A color conversion layer may be formed over the first, second, and third light spreading layers. First and second brightness enhancement films may be formed over the color conversion layer.
Abstract:
A display may have a pixel array such as a liquid crystal pixel array. The pixel array may be illuminated with backlight illumination from a direct-lit backlight unit. The backlight unit may include an array of light-emitting diodes (LEDs) on a printed circuit board. The display may have a notch to accommodate an input-output component. Reflective layers may be included in the notch. The backlight may include a color conversion layer with a property that varies as a function of position. The light-emitting diodes may be covered by a slab of encapsulant with recesses in an upper surface.
Abstract:
A privacy film may have a light-blocking layer that is interposed between first and second transparent substrates. The light-blocking layer may have a plurality of opaque portions and a plurality of transparent portions. The opaque portions may be shaped to ensure light from the display is directed only to the primary viewer of the display. Each opaque portion of the light-blocking layer may extend along a respective longitudinal axis between the first and second transparent substrates. Privacy films used to cover curved displays may have opaque portions that extend along longitudinal axes that have different angles relative to the transparent substrates. Opaque portions in the edge of the privacy film may have longitudinal axes that are at non-perpendicular angles with respect to the transparent substrates. A privacy film for a curved display may also include a light-redirecting layer such as a prism layer or a liquid crystal layer.