Abstract:
In a wireless network, simultaneous support of distributed and contiguous sub-carrier allocation may be accomplished in the same sub-frame or time zone. Techniques are described herein that can be used to allocate distributed and/or contiguous basic (physical) resource blocks to users by specifying a codebook index and parent node. Techniques are described herein that can be used to flexibly set a number of sub-channels over which a subscriber station indicates a channel quality indicator to a base station. Sub-channels may be represented as nodes and may be grouped to include a parent node and child nodes. By specifying a code book to use and a parent node, the channel quality indicator of the parent and children nodes can be indicated.
Abstract:
Disclosed is a method for reducing number of bits in a Media Access Protocol (MAP) message. The MAP message comprises a plurality of information elements grouped into one of a first set of information elements and a second set of information elements. The first set of information elements are arranged in a pre-defined order and each of the second set of information elements is inserted into one of a prefix position to the pre-defined order, a suffix position to the pre-defined order and an intermediate position in-between two information elements in the pre-defined order. Each information element of the second set of information elements is then coded based on position of the information element relative to the position of the first set of information elements in the pre-defined order, thereby reducing the number of bits in the MAP message.
Abstract:
An apparatus and method that allow user equipment (UE) to transmit information directly with other user equipment, using a device-to-device (D2D) mode is disclosed herein. A first D2D UE (dUE1) that wishes so communicate to a second D2D UE (dUE2) in D2D mode makes various communications requests to an Evolved Node B (eNB), which can facilitate the connection between the dUE1 and the dUE2. Among these requests are to make the D2D connection via WiFi instead of via Long Term Evolution (LTE). The eNB determines the WiFi capabilities of dUE1 and dUE2, then assigns a subset of available channels to be scanned by dUE1 and a separate subset of available channels to be scanned by dUE2. Thereafter, the eNB can assign a WiFi channel based on the scans performed by dUE1 and dUE2.
Abstract:
An apparatus may include a transceiver operable to receive a downlink message from a base station for a serving cell, the downlink message allocating a set of control parameters. The apparatus may also include a processor circuit communicatively coupled to the transceiver and an uplink power control module operable on the processor circuit to read the set of control parameters, and apply a signal-to-noise-and-interference (SINR) parameter based on the received set of control parameters to determine physical uplink shared channel (PUSCH) power to be applied for a PUSCH transmission. Other embodiments are disclosed and claimed.
Abstract:
A communication apparatus (CA) such as a mobile node/station (MN), a base station (BS), or a radio station (RS) may support determination of HARQ timing. The CA may generate at least in part one or more generalized frames such as a frequency division duplex (FDD) frame or a time division duplex (TDD) frame. The generalized FDD and TDD frames may include support to determine the HARQ timing considering various factors, which may affect the HARQ timing. The FDD and TDD frames may include information corresponding to various factors to determine the HARQ timing considering factors such as DL/UL ratio, number of sub-frames per frame, variable transmission time interval (TTI), relay zones, legacy IEEE® 802.16e zones, and availability of ACKCH.
Abstract:
A method of avoiding periodic interference by permuting periodic transmissions by a base station (BS) may include transmitting a frame of data to a subscriber station (SS). The BS may check for an acknowledgement of the frame of data from the SS and may schedule a next frame of data for transmission or retransmission based on whether the acknowledgement was received from the SS. The scheduling may include permuting traffic within the next frame in time or in frequency relative to similar traffic in a prior frame according to a predetermined function. The BS may generate media access protocol (MAP) information for the next frame based on the permuting.
Abstract:
Embodiments of base station and method for allocating subchannels of a time-slot in a wireless access network are generally described herein. Other embodiments may be described and claimed. In some embodiments, the assignment of subchannels may be based on subchannel quality and average throughput for mobile stations currently associated with a base station. In some embodiments, modified proportional fairness may be achieved.
Abstract:
Wireless broadband resource allocation indexing is generally presented. In this regard a method is introduced comprising determining a total number of allowable continuous logical resource unit (LRU) allocations for a bandwidth, removing allowable allocations to generate a set of allocations that can be indexed with fewer bits than the total number of allowable allocations, and storing an index of the set of allocations in a memory. Other embodiments are also disclosed and claimed.
Abstract:
Embodiments of a base station and methods for allocating uplink bandwidth using SDMA are generally described herein. In some embodiments, uplink bandwidth request messages are received on a bandwidth request contention channel from one or more subscriber stations. The uplink bandwidth request messages are generated by the subscriber stations by modulating pilot subcarriers of a randomly selected disjoint pilot pattern with a randomly selected orthogonal sequence. The base station allocates uplink bandwidth to the subscriber stations when the uplink bandwidth request messages are successfully detected and decoded. The base station uses an SDMA technique to determine channel responses based on the orthogonal sequences to detect and decode the uplink bandwidth request messages.
Abstract:
Briefly, in accordance with one or more embodiments, a pathloss gap between a downlink pathloss from a base station to a mobile station and an uplink pathloss from the mobile station to the base station is estimated. An initial offset value for uplink power control of the estimated pathloss gap is calculated based at least in part on said estimating. An offset value for an uplink data channel or an uplink control channel, or combinations thereof, is set based at least in part on the initial offset value. The pathloss gap for uplink power control is compensated using the set offset value.