Abstract:
An efficient power transfer power amplifier (PA) architecture is disclosed that includes a first PA, a first impedance transformation network (ITN) coupled to the first PA, a second PA, and a second ITN coupled to the second PA. A switching network having a plurality of load outputs along with a first switch input coupled to a first impedance output of the first ITN and a second switch input coupled to a second impedance output of the first ITN, a third switch input coupled to a third impedance output of the second ITN, and a fourth switch input coupled to a fourth impedance output of the second ITN. A control system is adapted to control the switching network to switch signals at the first, second, third, and fourth switch inputs such that select ones of the signals travel paths having matching impedances to loads coupled to the plurality of load outputs.
Abstract:
Configuration-feedback circuitry and transceiver circuitry are disclosed. The configuration-feedback circuitry regulates an output power from a radio frequency power amplifier based on a difference between a target output power from the radio frequency power amplifier and a measured output power from the radio frequency power amplifier. The transceiver circuitry regulates a modulated power supply voltage, which is used by the radio frequency power amplifier to provide power for amplification, based on the difference between the target output power from the radio frequency power amplifier and the measured output power from the radio frequency power amplifier.
Abstract:
A parallel amplifier, a switching supply, and a radio frequency (RF) notch filter are disclosed. The parallel amplifier has a parallel amplifier output, such that the switching supply is coupled to the parallel amplifier output. Further, the RF notch filter is coupled between the parallel amplifier output and a ground. The RF notch filter has a selectable notch frequency, which is based on an RF duplex frequency.
Abstract:
A front end radio architecture is configured to provide a split band frequency arrangement that includes co-banding. The disclosed split band frequency arrangement combines a medium bandwidth filter with a small bandwidth filter to provide enough bandwidth to pass a relatively large communication band. The medium bandwidth filter has a bandwidth that is large enough to support co-banding of smaller communication bands, while also having a narrow enough bandwidth to realize a relatively steep roll-off that ensures coexistence with adjacent bands that are not co-banded. The bandwidths of the medium bandwidth filter and the small bandwidth filter overlap in bandwidth by an amount that is at least as large as the highest bandwidth signal expected to be received or transmitted. The split band frequency arrangement reduces the number of filters needed in the front end radio architecture by repurposing the small bandwidth filter, and by co-banding the smaller communication bands.
Abstract:
This disclosure relates to radio frequency (RF) front-end circuitry. In one embodiment, the RF front-end circuitry is arranged to provide antenna switching functionality for a Worldphone or a World tablet. The RF front-end circuitry may include front-end switching circuitry, a multiple throw microelectromechanical switch (MTMEMS), a first antenna port, a second antenna port, and a third antenna port. The front-end switching circuitry of the RF front-end circuitry is configured to selectively couple one or more RF ports to either the first antenna port or the second antenna port. The MTMEMS is configured to selectively couple a pole port coupled to the third antenna port to any one of a set of throw ports, which may be RF ports or may be coupled to RF ports. As such, the RF front-end circuitry is capable of providing antenna switching functionality between three antennas for a Worldphone or World tablet.
Abstract:
This disclosure relates to antenna switching circuitry and other radio frequency (RF) front-end circuitry. In one embodiment, the antenna switching circuitry includes a multiple throw solid-state transistor switch (MTSTS) and a multiple throw microelectromechanical switch (MTMEMS). The MTSTS is configured to selectively couple a first pole port to any one of a first set of throw ports and to selectively couple a second pole port to any one of a second set of throw ports. The MTMEMS is configured to selectively couple a third pole port to any one of a third set of throw ports. The third pole port of the MTMEMS is coupled to a first throw port in the first set of throw ports and a second throw port in the second set of throw ports of the MTSTS. Accordingly, the MTSTS is capable of routing multiple RF signals to and from the MTMEMS.
Abstract:
This disclosure relates to radio frequency (RF) power converters and methods of operating the same. In one embodiment, an RF power converter includes an RF switching converter, a low-drop out (LDO) regulation circuit, and an RF filter. The RF filter is coupled to receive a pulsed output voltage from the RF switching converter and a supply voltage from the LDO regulation circuit. The RF filter is operable to alternate between a first RF filter topology and a second RF filter topology. In the first RF filter topology, the RF filter is configured to convert the pulsed output voltage from a switching circuit into the supply voltage. The RF filter in the second RF filter topology is configured to filter the supply voltage from the LDO regulation circuit to reduce a ripple variation in a supply voltage level of the supply voltage. As such, the RF filter provides greater versatility.
Abstract:
This disclosure relates generally to radio frequency (RF) switching converters and RF amplification devices that use RF switching converters. In one embodiment, an RF switching converter includes a switching circuit operable to receive a power source voltage, a switching controller configured to switch the switching circuit so that the switching circuit generates a pulsed output voltage from the power source voltage, and an RF filter configured to convert the pulsed output voltage into a supply voltage, wherein the RF filter includes a decoupling capacitor configured to receive the supply voltage. The switching controller is configured to generate a ripple correction current that is injected into the decoupling capacitor such that the decoupling capacitor filters the ripple correction current. The decoupling capacitor outputs the ripple correction current such that the ripple correction current reduces a ripple variation in a supply current level of a supply current resulting from the supply voltage.
Abstract:
This disclosure relates to antenna switching circuitry and other radio frequency (RF) front-end circuitry. In one embodiment, the antenna switching circuitry includes a multiple throw solid-state transistor switch (MTSTS), a multiple throw microelectromechanical switch (MTMEMS), and a control circuit. The MTSTS is configured to selectively couple a first pole port to any one of a first set of throw ports and to selectively couple a second pole port to any one of a second set of throw ports. The MTMEMS is configured to selectively couple a third pole port to any one of a third set of throw ports. The control circuit is configured to control the selective coupling of the MTSTS and the MTMEMS. In this manner, the control circuit may operate the antenna switching circuitry so that RF signals may be routed in accordance with Long Term Evolution (LTE) Multiple-Input and Multiple-Output (MIMO) and/or LTE diversity specifications.
Abstract:
RF front-end circuitry, which includes RF switching and duplexing circuitry, a first RF diplexer, and a second RF diplexer, is disclosed. The RF switching and duplexing circuitry operates in one of a group of RF transmit modes, such that the group of RF transmit modes includes at least one transmit uplink carrier aggregation mode. The RF switching and duplexing circuitry provides at least one RF transmit signal based on the one of the group of RF transmit modes. The first RF diplexer is coupled between the RF switching and duplexing circuitry and a primary RF antenna. The second RF diplexer is coupled between the RF switching and duplexing circuitry and an auxiliary RF antenna.