Abstract:
One method disclosed includes, among other things, forming an initial fin, covering a top surface and a portion of the sidewalls of the initial fin structure with etch stop material, forming a sacrificial gate structure above and around the initial fin structure, forming a sidewall spacer adjacent the sacrificial gate structure, performing at least one process operation to remove the sacrificial gate structure and thereby define a replacement gate cavity, performing at least one etching process through the replacement gate cavity to remove a portion of the initial fin structure so as to thereby define a final fin structure and a channel cavity positioned below the final fin structure, and substantially filling the channel cavity with an insulating material.
Abstract:
Semiconductor structures with reduced gate and/or contact resistances and fabrication methods are provided. The method includes: providing a semiconductor device, which includes forming a transistor of the semiconductor device, where the transistor forming includes: forming a T-shaped gate for the transistor, the T-shaped gate being T-shaped in elevational cross-section; and forming an inverted-T-shaped contact to an active region of the transistor, the inverted-T-shaped contact including a conductive structure with an inverted T-shape in elevational cross-section.
Abstract:
One method disclosed herein includes forming a conformal liner layer in a plurality of trenches that define a fin, forming a layer of insulating material above the liner layer, exposing portions of the liner layer, removing portions of the liner layer so as to result in a generally U-shaped liner positioned at a bottom of each of the trenches, performing at least one third etching process on the layer of insulating material, wherein at least a portion of the layer of insulating material is positioned within a cavity of the U-shaped liner layer, and forming a gate structure around the fin. A FinFET device disclosed herein includes a plurality of trenches that define a fin, a local isolation that includes a generally U-shaped liner that defines, in part, a cavity and a layer of insulating material positioned within the cavity, and a gate structure positioned around the fin.
Abstract:
One method disclosed herein includes forming a plurality of fin-formation trenches in a semiconductor substrate that define a plurality of spaced-apart fins, forming a patterned liner layer that covers a portion of the substrate positioned between the fins while exposing portions of the substrate positioned laterally outside of the patterned liner layer, and performing at least one etching process on the exposed portions of the substrate through the patterned liner layer to define an isolation trench in the substrate, wherein the isolation trench has a depth that is greater than a depth of the fin-formation trenches.
Abstract:
One illustrative method disclosed herein includes forming a sacrificial gate structure above a fin, wherein the sacrificial gate structure is comprised of a sacrificial gate insulation layer, a layer of insulating material, a sacrificial gate electrode layer and a gate cap layer, forming a sidewall spacer adjacent opposite sides of the sacrificial gate structure, removing the sacrificial gate structure to thereby define a gate cavity that exposes a portion of the fin, and forming a replacement gate structure in the gate cavity. One illustrative device disclosed herein includes a plurality of fin structures that are separated by a trench formed in a substrate, a local isolation material positioned within the trench, a gate structure positioned around portions of the fin structures and above the local isolation material and an etch stop layer positioned between the gate structure and the local isolation material within the trench.
Abstract:
One method includes forming a recessed gate/spacer structure that partially defines a spacer/gate cap recess, forming a gate cap layer in the spacer/gate cap recess, forming a gate cap protection layer on an upper surface of the gate cap layer, and removing portions of the gate cap protection layer, leaving a portion of the gate cap protection layer positioned on the upper surface of the gate cap layer. A device disclosed herein includes a gate/spacer structure positioned in a layer of insulating material, a gate cap layer positioned on the gate/spacer structure, wherein sidewalls of the gate cap layer contact the layer of insulating material, and a gate cap protection layer positioned on an upper surface of the gate cap layer, wherein the sidewalls of the gate cap protection layer also contact the layer of insulating material.
Abstract:
Methods for fabricating FinFET integrated circuits with uniform fin height and ICs fabricated from such methods are provided. A method includes etching a substrate using an etch mask to form fins. A first oxide is formed between the fins. A first etch stop is deposited on the first oxide. A second oxide is formed on the first etch stop. A second etch stop is deposited on the second oxide. A third oxide is deposited overlying the second etch stop. An STI extends from at least a surface of the substrate to at least a surface of the second etch stop overlying the fins to form a first active region and a second active region. The first etch stop overlying the fins is removed. The third oxide is removed to expose the second etch stop. A gate stack is formed overlying a portion of each of the fins.
Abstract:
One method includes performing an etching process through a patterned mask layer to form trenches in a substrate that defines first and second fins, forming liner material adjacent the first fin to a first thickness, forming liner material adjacent the second fin to a second thickness different from the first thickness, forming insulating material in the trenches adjacent the liner materials and above the mask layer, performing a process operation to remove portions of the layer of insulating material and to expose portions of the liner materials, performing another etching process to remove portions of the liner materials and the mask layer to expose the first fin to a first height and the second fin to a second height different from the first height, performing another etching process to define a reduced-thickness layer of insulating material, and forming a gate structure around a portion of the first and second fin.
Abstract:
Embodiments of the present invention provide a method of forming semiconductor structure. The method includes forming a set of device features on top of a substrate; forming a first dielectric layer directly on top of the set of device features and on top of the substrate, thereby creating a height profile of the first dielectric layer measured from a top surface of the substrate, the height profile being associated with a pattern of an insulating structure that fully surrounds the set of device features; and forming a second dielectric layer in areas that are defined by the pattern to create the insulating structure. A structure formed by the method is also disclosed.
Abstract:
Semiconductor devices and methods for making the same includes conformally forming a first spacer on multiple fins. A second spacer is conformally formed on the first spacer, the second spacer being formed from a different material from the first spacer. The fins are etched below a bottom level of the first spacer to form a fin cavity. Material from the first spacer is removed to expand the fin cavity. Fin material is grown directly on the etched fins to fill the fin cavity.