Abstract:
A method for transmitting data between at least three nodes of an orthogonal frequency-division multiplexing network, including assigning to each node at least one transmit frequency and one receive frequency, the assigned frequencies being different from one node to the other; forming data symbols to be transmitted all having the same duration whatever the transmission node; and adding, to each transmitted symbol, a cyclic prefix and a cyclic suffix reproducing a predetermined number of samples, respectively of the end and of the beginning of the symbol.
Abstract:
A method for forming a component of TMBS type having its periphery formed of a trench with insulated walls filled with a conductor, including the steps of depositing on a semiconductor substrate a thick layer of a first insulating material and a thin layer of a second material; simultaneously digging a peripheral trench and the trenches of the component; isotropically etching the first material so that a cap overhanging a recess remains; forming a thin insulating layer; and filling the trenches and said recess with a conductive material.
Abstract:
A method for associating with a first address a second address of reduced size, comprising: calculating a first intermediary address by the first address, the first intermediary address having a reduced size with respect to the first address; then choosing as a second address the first intermediary address if this second address is not associated with another first address, or, otherwise, calculating a second intermediary address by a first polynomial division of the first address, the second intermediary address having a reduced size as compared to the first address; then choosing as a second address the second intermediary address.
Abstract:
A pixel having a MOS-type transistor formed in and above a semiconductor substrate of a first doping type, a buried semiconductor layer of a second doping type being placed in the substrate under the MOS transistor and separated therefrom by a substrate portion forming a well. The buried semiconductor layer comprises a thin portion forming a pinch area placed under the transistor channel area and a thick portion placed under all or part of the source/drain areas of the transistor.
Abstract:
A method of processing interrupts in a processor adapted for operating either in a first mode, or in a second mode, and having at least one counter comprises the following, when an interrupt associated with an interrupt subroutine executable in the second mode is dispatched to the processor in the course of the execution of a process by the said processor in the first mode, at least the counter is initialized to a start value; then the counter is started while the processor is toggled into the second mode to execute the interrupt subroutine associated with the interrupt; when the counter reaches an end value, the processor is returned to the first mode for the continuation of the execution of the process.
Abstract:
The present invention relates to a method for programming a memory cell having a determined transconductance curve. The programming of the memory cell comprises a series of programming cycles each comprising a step of verifying the state of the memory cell. According to the present invention, the verify step comprises a first read of the memory cell with a first read voltage greater than a reference threshold voltage, and a second read of the memory cell with a second read voltage lower than or equal to the reference threshold voltage. The memory cell is considered not to be in the programmed state if first- and second-read currents flowing through the memory cell are above determined thresholds, and programming voltage pulses are applied to the memory cell while the latter is not in the programmed state. Application in particular to the programming of Flash memory cells.
Abstract:
A method for selectively etching single-crystal silicon-germanium in the presence of single-crystal silicon, including a chemical etch based on hydrochloric acid in gaseous phase at a temperature lower than approximately 700° C.
Abstract:
A voltage regulation circuit intended to generate a regulated voltage for an electronic device, comprising: a transconductance amplifier based on a pair of MOS type differential amplifiers, said amplifier having a first input onto which a reference potential is applied and a second input onto which a counter reaction of said regulated voltage is input; a follower stage connected to the output from said transconductance amplifier; a MOS type transistor that will be used to make the output stage of the regulation circuit with a source connected to a first power supply potential. The transconductance amplifier comprises a resistive load 360 with a profile in K/gm, where gm is the transconductance coefficient of said input differential pair, said resistive load being connected to said first power supply potential.
Abstract:
A method of fast random access management of a DRAM-type memory, including the steps of: dividing the memory into memory banks accessible independently in read and write mode; identifying the address of the bank concerned by a current request; comparing the address of the bank concerned by a current request with the addresses of the N−1 banks previously required, N being an integral number of cycles necessary to the executing of a request; and if the address of the bank concerned by a current request is equal to the address of a bank corresponding to one of the N−1 previous requests, suspending and memorizing the current request until the previous request involving the same bank is executed, otherwise, executing it.
Abstract:
A method of automatic calculation of several integer divisions by a same integer divider, of several successive integer dividends, separated from one another by a constant iteration step, smaller than or equal to the divider, including selecting, from a table of increments, according to an iteration index, a 0 or a 1 to be added to the operation result of the preceding iteration, the number of 0s in the table of increments being equal to the divider minus 1.