Abstract:
A coating apparatus includes: a slot die configured to apply coating solution on a support by discharging the coating solution from a tip of a slot and forming a coating solution bead in a clearance between the tip of the slot and the support; a pipe through which the coating solution is fed to a pocket of the slot die; an orifice formed in the pipe at a position nearer a circumference of a circular cross section in a radial direction of the pipe in relation to a center of the circular cross section; a forward tapered inlet channel which is formed at an entrance side of the orifice in the pipe and whose aperture narrows to the orifice; a rearward tapered outlet channel which is formed at an exit side of the orifice in the pipe and whose aperture grows toward a downstream.
Abstract:
An electrode mixture paste is applied on both sides of a strip of core material as it runs along its lengthwise direction, and the coating thickness of the paste is adjusted as the core material coated with the paste passes through a gap between a pair of scraper tools. Tips provided to the scraper tools scrape off the paste to form a paste-coated portion of a predetermined width. The electrode mixture paste scraped off with the tips is returned through recesses on the upstream side of the tips in the running direction of the core material, so as to prevent the phenomenon where the coating thickness is increased at both side edges of the paste-coated portion. Thus, a method for applying electrode mixture paste is realized that can prevent the phenomenon where the coating thickness is increased at both side edges of the paste-coated portion.
Abstract:
Methods are provided for applying a layer to a honeycomb body. The methods include the steps of applying a cement mixture to a cylindrical surface of the honeycomb body and rotating the honeycomb body and a blade relative to one another about a longitudinal axis of the honeycomb body. The methods further include the steps of holding the blade at a first interior angle during a relative rotation of the honeycomb body and the blade about the longitudinal axis. The methods then include the step of moving the blade from the first interior angle to a second interior angle greater than the first interior angle. The methods still further include the step of rotating of the honeycomb body and the blade relative to one another about the longitudinal axis after the blade begins to move from the first interior angle toward the second interior angle.
Abstract:
A coated glass mat comprises a glass mat substrate having non-woven glass fibers and a coating which essentially uniformly penetrates the glass mat substrate to desired fractional thickness of the coated glass mat. The coating imparts a tensile strength to the coated glass mat which on average is at least 1.33 times greater than the tensile strength of the glass mat substrate without the coating. In example embodiments, penetration of the coating into the glass mat substrate preferably extends to a depth of from twenty five percent of a thickness of the coated glass mat to seventy five percent of the thickness of the coated glass mat. Moreover, a non-coated thickness of the coated glass mat is sufficiently thick for bonding purposes with, e.g., a gypsum slurry or other core materials such as thermoplastic or thermosetting plastics. The coating has a porosity in a range of from 1.3 CFM to 5.0 CFM, e.g., the coating comprises a coating blend which provides the coated glass mat with a porosity sufficient to allow water vapor to escape from a gypsum slurry when heated. The coating is preferably a coating blend comprised of water, latex binder, inorganic pigment, and inorganic binder.
Abstract:
A supply system for a chambered doctor blade assembly makes possible the sequential use of water-based and non-water-based coating materials through automated functions programmed in a PLC that controls the system. A pair of pneumatically driven diaphragm pumps serve as supply pump and return pump between the doctor blade chamber and a coating reservoir A PLC controls the pulse rate of pneumatic pressure to the pumps to control the rate of flow of the coating material into, and out of the doctor blade chamber. An ultrasonic sensor mounted detects the liquid level in the trough collection area. The PLC is programmed to modify the pulse rate of the supply pump and return pump to maintain the liquid level in the trough collection area above the drain thereof and below the maximum tolerance.
Abstract:
An improved film coater which utilizes one or more coater or applicators to transfer coating to the outer surfaces of at least one more rolls, which in turn transfers the coating from the roll surface to one or more sides of the web for coating paper is disclosed. The coater or applicator includes a smoothing doctor on the web and downstream of the one or more rolls, and may also utilize humidity from one of steam showers or a humidity enclosure to assist smoothing. The web may run in any direction, but preferably runs upwardly from the roll toward the doctor to reduce “film split” droplets effect. The present invention also reduces the fiber rise and arrange peel pattern on the coated web, resulting in a smooth uniform coated paper.
Abstract:
Equipment for changing a blade (43) in a coating device (51) changes several blades (43) arranged in a band (43). The equipment includes reels (11, 40) connected to the ends of the blade holder (45), for holding the reeled unused and used band (43); transfer devices (13, 20) for moving the band (43) in connection with the blade holder (45), and lifting devices (17) for lifting the band (43) up and lowering it into the blade holder (45). Indentations (44) at least the length of the hollow shaft (52) are arranged at regular intervals on the band (43), and are arranged to permit the blade (43) to be lowered into the blade holder (45).
Abstract:
A coated glass mat comprises a glass mat substrate having non-woven glass fibers and a coating which essentially uniformly penetrates the glass mat substrate to desired fractional thickness of the coated glass mat. The coating imparts a tensile strength to the coated glass mat which on average is at least 1.33 times greater than the tensile strength of the glass mat substrate without the coating. In example embodiments, penetration of the coating into the glass mat substrate preferably extends to a depth of from twenty five percent of a thickness of the coated glass mat to seventy five percent of the thickness of the coated glass mat. Moreover, a non-coated thickness of the coated glass mat is sufficiently thick for bonding purposes with, e.g., a gypsum slurry or other core materials such as thermoplastic or thermosetting plastics. The coating has a porosity in a range of from 1.3 CFM to 5.0 CFM, e.g., the coating comprises a coating blend which provides the coated glass mat with a porosity sufficient to allow water vapor to escape from a gypsum slurry when heated. The coating is preferably a coating blend comprised of water, latex binder, inorganic pigment, and inorganic binder.
Abstract:
A coated glass mat comprises a glass mat substrate having non-woven glass fibers and a coating which essentially uniformly penetrates the glass mat substrate to desired fractional thickness of the coated glass mat. The coating imparts a tensile strength to the coated glass mat which on average is at least 1.33 times greater than the tensile strength of the glass mat substrate without the coating. In example embodiments, penetration of the coating into the glass mat substrate preferably extends to a depth of from twenty five percent of a thickness of the coated glass mat to seventy five percent of the thickness of the coated glass mat. Moreover, a non-coated thickness of the coated glass mat is sufficiently thick for bonding purposes with, e.g., a gypsum slurry or other core materials such as thermoplastic or thermosetting plastics. The coating has a porosity in a range of from 1.3 CFM to 5.0 CFM, e.g., the coating comprises a coating blend which provides the coated glass mat with a porosity sufficient to allow water vapor to escape from a gypsum slurry when heated. The coating is preferably a coating blend comprised of water, latex binder, inorganic pigment, and inorganic binder.
Abstract:
An apparatus for coating an outer peripheral surface of a pillar structure 1 comprising a smoothing means, and a nozzle 12b having an opening 12c for supplying a coating material; the opening 12c being disposed nearly at the same position as that of the upper end portion 1e of the structure 1 in nearly vertical direction of the structure when being held for coating, and having a length of the longer direction shorter than the length between the both ends of the structure 1. The coating material is supplied from a nozzle 12b to the outer peripheral surface 1a of the structure and coating it on the outer peripheral surface 1a while smoothing the coating surface by a smoothing means 10. The coated surface of the structure is protected from cracking during drying after coating and it is free from defects. A coating method using the apparatus is also provided.