Abstract:
Systems and associated methods for rapid integration and control of payloads carded by a multi-mode, unmanned vehicle configured to accommodate a variety of payloads of varying size, shape, and interface and control characteristics. Mechanical, power, signal, and logical interfaces to a variety of payloads operate to enable environmental protection, efficient placement and connection to the vehicle, and control of those payloads in multiple environmental modes as well as operational modes (including in air, on the surface of water surface, and underwater).
Abstract:
A hybrid axial/cross-flow fan aerial vehicle includes both axial and cross-flow fan propulsion for efficient hover and forward flight performance. The axial fans provide primarily vertical thrust, while the cross-flow fan provides horizontal, as well as vertical, thrust. The vehicle takes off vertically, is capable of hover, and can fly forward by vectoring the thrust of the cross-flow fan system. This approach provides large internal cargo capacity and high forward flight speeds.
Abstract:
A span-loaded, highly flexible flying wing, having horizontal control surfaces mounted aft of the wing on extended beams to form local pitch-control devices. Each of five spanwise wing segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other wing segments, to minimize inter-segment loads. Wing dihedral is controlled by separately controlling the local pitch-control devices consisting of a control surface on a boom, such that inboard and outboard wing segment pitch changes relative to each other, and thus relative inboard and outboard lift is varied.
Abstract:
Systems and associated methods for planning and control of a fleet of unmanned vehicles in missions that are coordinated temporally and spatially by geo-location, direction, vehicle orientation, altitude above sea level, and depth below sea level. The unmanned vehicles' transit routes may be fully autonomous, semi-autonomous, or under direct operator control using off board control systems. Means are provided for intervention and transit changes during mission execution. Means are provided to collect, centralize and analyze mission data collected on the set of participating unmanned vehicles.
Abstract:
A MEUV that is able to navigate aerial, aquatic, and terrestrial environments through the use of different mission mobility attachments is disclosed. The attachments allow the MEUV to be deployed from the air or through the water prior to any terrestrial navigation. The mobility attachments can be removed or detached by and from the vehicle during a mission.
Abstract:
An unmanned aerial vehicle (UAV) which in some embodiments may comprise a fuselage which includes a cavity formed by an interior cavity wall and a fuselage exterior wall, with the cavity disposed within the fuselage. A first electronic module may be electrically coupled to a first magnetic connector and a second electronic module may be electrically coupled to a second magnetic connector. Electronic communication between the first and second modules may be provided by contact between the first magnetic connector and the second magnetic connector. In further embodiments, when removably positioned adjacent to each other in the cavity, the first magnetic connector may contact the second magnetic connector to establish electronic communication between the first and second modules.
Abstract:
A vertical takeoff/landing capable, multi-engine aircraft with an airfoil without elevator or rudder surfaces. Strut apertures are provided that accommodate vertical and horizontal translation of the airfoil in reference to engine supporting struts which are disposed through the apertures, opposite ends of the struts extending to opposite sides of the airfoil, wherein the struts are adjustably attached to the airfoil. A first and second plurality of engines are attached to ends of the struts, an attachment position of the plurality of engines to the struts is horizontally adjustable. A computerized engine controller, controls thrusts of the engines, to enable the aircraft to vertically lift off/land and re-orient itself to horizontally fly, and perform thrust-initiated elevator and rudder emulating flight. An external payload-to-delivery mating mechanism is attached to the bottom of the payload, which mates to a pole leading to the payload receptacle. Transceivers facilitate precise transfer of the payload.
Abstract:
An unmanned aircraft configured to fall or crash in a controlled and safe manner. The unmanned aircraft includes a drive system to thrust the unmanned aircraft during a flight, and a reverse thrust system to reverse thrust the unmanned aircraft during a landing. The unmanned aircraft further includes a controller operationally coupled to the reverse thrust system, and a detector to detect and notify to the controller that the unmanned aircraft is in an uncontrolled situation during the flight. The controller is adapted to activate the reverse thrust system in order to reverse thrust the unmanned aircraft in-flight upon notification from the detector that the unmanned aircraft is in an uncontrolled situation.
Abstract:
One variation of a method for imaging an area of interest includes: within a user interface, receiving a selection for a set of interest points on a digital map of a physical area and receiving a selection for a resolution of a geospatial map; identifying a ground area corresponding to the set of interest points for imaging during a mission; generating a flight path over the ground area for execution by an unmanned aerial vehicle during the mission; setting an altitude for the unmanned aerial vehicle along the flight path based on the selection for the resolution of the geospatial map and an optical system arranged within the unmanned aerial vehicle; setting a geospatial accuracy requirement for the mission based on the selection for the mission type; and assembling a set of images captured by the unmanned aerial vehicle during the mission into the geospatial map.
Abstract:
An aircraft for unmanned aviation is described. The aircraft includes an airframe, a pair of fins attached to a rear portion of the airframe, a pair of dihedral braces attached to a bottom portion of the airframe, a first thrust vectoring module and a second thrust vectoring module, and an electronics module. The electronics module provides commands to the two thrust vectoring modules. The two thrust vectoring modules are configured to provide lateral and longitudinal control to the aircraft by directly controlling a thrust vector for each of the pitch, the roll, and the yaw of the aircraft. The use of directly articulated electrical motors as thrust vectoring modules enables the aircraft to execute tight-radius turns over a wide range of airspeeds.