Abstract:
Various embodiments of reinforced mirror microstructures for a surface micromachined optical system are disclosed. Multi-layered and structurally reinforced mirror microstructures are disclosed, including both two and three-layer microstructures. Adjacent structural layers in these multi-layered mirror microstructures may be structurally reinforced and interconnected by a plurality of vertically disposed columns, or by a plurality of at least generally laterally extending rails or ribs, or some combination thereof. Various embodiments of a single layered mirror microstructure with a structural reinforcement assembly that cantilevers from a lower surface thereof is also disclosed.
Abstract:
A MEMS actuator 1 comprising an actuator member 2 operably engaged by at least one actuator beam 4 and heating means 12 for heating the or each beam 4. The heating may cause expansion of the or each beam4, wherein the or each beam 4 has two ends A, Anull and the or each beam 4 is fixed at only one end A and wherein the expansion effects movement of the actuator member 2. The heating may cause thermal expansion of the beam 4 in one direction and longitudinal displacement of the beam 4 in the direction of thermal expansion, which longitudinal displacement effects movement of the actuator member 2. The beam 4 may act on the member 2 at a position in relation to a pivot point P so as to produce a torque which effects pivoting of the member 2 about the pivot point P. The actuator may have at least two actuator beams 4 and heating the at least two beams 4 may cause simultaneous expansion of the at least two beams 4, which simultaneous expansion effects movement of the actuator member 2. Alternatively, heating one of the at least two beams 4 may cause differential expansion of the at least two beams 4, which differential expansion effects movement of the actuator member 2. The actuator may have at least two actuator members 202 operably engaged by at least one actuator beam 204 and heating the or each beam 204 may cause expansion of the or each beam 204, which expansion effects differential movement of the at least two members 202 or bending of the at least two members 202.
Abstract:
A microelectromechanical systems (MEMS) element, MEMS optical switch and MEMS fabrication method are described. The MEMS element comprises a crystalline and moveable element is moveably attached to the substrate. The moveable element includes a perpendicular portion oriented substantially perpendicular to a plane of the substrate. The crystal structure of the perpendicular portion and substrate are substantially similar. The moveable element moveable is moveably attached to the substrate for motion substantially constrained to a plane oriented substantially perpendicular to a plane of the substrate. In at least one position, a part of a perpendicular portion of the moveable element projects beyond a surface of the substrate. The moveable element may be retained in place by a latch. The perpendicular portion may be formed substantially perpendicular portion to the substrate. An array of such structures can be implemented to work as an optical switch. The optical switch may comprise a crystalline substrate and one or more moveable elements moveably attached to the substrate The MEMS elements may be fabricated by providing a substrate; forming one or more trenches in the substrate to define a perpendicular portion of a element; and moveably attaching the moveable element to a first surface of the substrate; removing a portion of the substrate such that at least a part of the perpendicular portion projects beyond a second surface of the substrate. The various embodiments provide for a robust and reliable MEMS elements that may be simply fabricated and densely packed.
Abstract:
A method of making a micromirror unit is provided. In accordance with the method, a micromirror unit is made from a material substrate having a multi-layer structure composed of silicon layers and at least one intermediate layer. The resulting micromirror unit includes a mirror forming base, a frame and a torsion bar. The method includes the following steps. First, a pre-torsion bar is formed by subjecting one of the silicon layers to etching. The obtained pre-torsion bar is rendered smaller in thickness than the mirror forming base and is held in contact with the intermediate layer. Then, the desired torsion bar is obtained by removing the intermediate layer contacting with the pre-torsion bar.
Abstract:
Optical cross-connect involve the general concept of a two dimensional array of MEMS tilt mirrors being used to direct light coming from a first optical fiber to a second optical fiber. Each MEMS tilt mirror in the two dimensional array can rotate about its x and y axis and is suspended by a plurality of suspension arms attached to a substrate.
Abstract:
A micrometer sized, single-stage, vertical thermal actuator capable of repeatable and rapid movement of a micrometer-sized optical device off the surface of a substrate. The vertical thermal actuator is constructed on a surface of a substrate. At least one hot arm has a first end anchored to the surface and a free end located above the surface. A cold arm has a first end anchored to the surface and a free end. The cold arm is located above the hot arm relative to the surface. A member mechanically and electrically couples the free ends of the hot and cold arms such that the member moves away from the substrate when current is applied to at least the hot arm. The hot arm can optionally include a grounding tab to minimize thermal expansion of the cold arm.
Abstract:
A microelectromechanical structure, usable in an optical switch for directing a light beam towards one of two light guide elements, including: a mirror element, rotatably movable; an actuator, which can translate; and a motion conversion assembly, arranged between the mirror element and the actuator. The motion conversion assembly includes a projection integral with the mirror element and elastic engagement elements integral with the actuator and elastically loaded towards the projection. The elastic engagement elements are formed by metal plates fixed to the actuator at one of their ends and engaging the projection with an abutting edge countershaped with respect to the projection.
Abstract:
A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with-the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.
Abstract:
Various embodiments of reinforced mirror microstructures for a surface micromachined optical system are disclosed. Multi-layered and structurally reinforced mirror microstructures are disclosed, including both two and three-layer microstructures. Adjacent structural layers in these multi-layered mirror microstructures may be structurally reinforced and interconnected by a plurality of vertically disposed columns, or by a plurality of at least generally laterally extending rails or ribs, or some combination thereof. Various embodiments of a single layered mirror microstructure with a structural reinforcement assembly that cantilevers from a lower surface thereof is also disclosed.
Abstract:
An optical switch selectively transmits an optical signal to one of multiple optical paths for use in an optical communication. The optical switch includes a mobile structure provided with a mirror surface at one end surface of the mobile structure to change the optical path by moving the mobile structure backward and forward along an axis parallel to the mirror surface. It has at least a pair of leaf springs in the form of a shallow arch, wherein each of the leaf springs is connected to both side surfaces of the mobile structure in a leaf spring axis perpendicular to the mirror surface, respectively, thereby obtaining a latch-up function and an actuator for moving the mobile structure. In the optical switch, elastic bodies are introduced into connection portions of the leaf springs, respectively, to give rise to a degree of freedom to the connection portions in the direction of the leaf spring axis. The elastic body can be an I-shape beam, a multiple spring with a curvature and an S-shape beam allowing angle deflection.