Abstract:
One illustrative method disclosed herein includes forming replacement gate structures for an NMOS transistor and a PMOS transistor by forming gate insulation layers and a first metal layer for the devices from the same materials and selectively forming a metal-silicide material layer only on the first metal layer for the NMOS device but not on the PMOS device. One example of a novel integrated circuit product disclosed herein includes an NMOS device and a PMOS device wherein the gate insulation layers and the first metal layer of the gate structures of the devices are made of the same material, the gate structure of the NMOS device includes a metal silicide material positioned on the first metal layer of the NMOS device, and a second metal layer that is positioned on the metal silicide material for the NMOS device and on the first metal layer for the PMOS device.
Abstract:
An integrated circuit includes a first FET structure and a second FET structure, both of which being formed over a silicon substrate. The first FET structure includes a high-k material layer, a layer of a first workfunction material formed over the high-k material layer, a layer of a barrier material formed over the first workfunction material layer; and a layer of a gate fill material formed over the barrier material layer. The entirety of the barrier material layer and the gate fill material layer are formed above the first workfunction material layer. The second FET structure includes a layer of the high-k material, a layer of a second workfunction material formed over the high-k material layer, a low-resistance material layer formed over the second workfunction material layer and a layer of the barrier material formed over the low-resistance material layer.
Abstract:
One method includes performing an etching process through a patterned mask layer to form trenches in a substrate that defines first and second fins, forming liner material adjacent the first fin to a first thickness, forming liner material adjacent the second fin to a second thickness different from the first thickness, forming insulating material in the trenches adjacent the liner materials and above the mask layer, performing a process operation to remove portions of the layer of insulating material and to expose portions of the liner materials, performing another etching process to remove portions of the liner materials and the mask layer to expose the first fin to a first height and the second fin to a second height different from the first height, performing another etching process to define a reduced-thickness layer of insulating material, and forming a gate structure around a portion of the first and second fin.
Abstract:
Embodiments of the present invention provide a method of forming semiconductor structure. The method includes forming a set of device features on top of a substrate; forming a first dielectric layer directly on top of the set of device features and on top of the substrate, thereby creating a height profile of the first dielectric layer measured from a top surface of the substrate, the height profile being associated with a pattern of an insulating structure that fully surrounds the set of device features; and forming a second dielectric layer in areas that are defined by the pattern to create the insulating structure. A structure formed by the method is also disclosed.
Abstract:
Disclosed herein are various methods of forming spacers on FinFETs and other semiconductor devices. In one example, the method includes forming a plurality of spaced-apart trenches in a semiconducting substrate that defines a fin, forming a first layer of insulating material in the trenches that covers a lower portion of the fin but exposes an upper portion of the fin, and forming a second layer of insulating material on the exposed upper portion of the fin. The method further comprises selectively forming a dielectric material above an upper surface of the fin and in a bottom of the trench, depositing a layer of spacer material above a gate structure of the device and above the dielectric material above the fin and in the trench, and performing an etching process on the layer of spacer material to define sidewall spacers positioned adjacent the gate structure.
Abstract:
One illustrative method disclosed herein includes forming replacement gate structures for an NMOS transistor and a PMOS transistor by forming gate insulation layers and a first metal layer for the devices from the same materials and selectively forming a metal-silicide material layer only on the first metal layer for the NMOS device but not on the PMOS device. One example of a novel integrated circuit product disclosed herein includes an NMOS device and a PMOS device wherein the gate insulation layers and the first metal layer of the gate structures of the devices are made of the same material, the gate structure of the NMOS device includes a metal silicide material positioned on the first metal layer of the NMOS device, and a second metal layer that is positioned on the metal silicide material for the NMOS device and on the first metal layer for the PMOS device.
Abstract:
One illustrative method disclosed herein includes forming gate insulation layers and a first metal layer for NMOS and PMOS devices from the same material, selectively forming a first metal layer only for the PMOS device, and forming different shaped metal silicide regions within the NMOS and PMOS gate cavities. A novel integrated circuit product disclosed herein includes an NMOS transistor with an NMOS gate insulation layer, an NMOS metal silicide having a generally rectangular cross-sectional configuration and an NMOS metal layer positioned on the NMOS metal silicide region. The product also includes a PMOS transistor with the same gate insulation material, a first PMOS metal and a PMOS metal silicide region, wherein the NMOS and PMOS metal silicide regions are comprised of the same metal silicide.
Abstract:
FinFET semiconductor devices with local isolation features and methods for fabricating such devices are provided. In one embodiment, a method for fabricating a semiconductor device includes providing a semiconductor substrate comprising a plurality of fin structures formed thereon, wherein each of the plurality of fin structures has sidewalls, forming spacers about the sidewalls of the plurality of fin structures, and forming a silicon-containing layer over the semiconductor substrate and in between the plurality of fin structures. The method further includes removing at least a first portion of the silicon-containing layer to form a plurality of void regions while leaving at least a second portion thereof in place and depositing an isolation material in the plurality of void regions.
Abstract:
One method includes forming a sidewall spacer adjacent a gate structure, forming a first liner layer on the sidewall spacer, forming a second liner layer on the first liner layer, forming a first layer of insulating material above the substrate and adjacent the second liner layer, selectively removing at least portions of the second liner layer relative to the first liner layer, forming a second layer of insulating material above the first layer of insulating material, performing at least one second etching process to remove at least portions of the first and second layers of insulating material and at least portions of the first liner layer so as to thereby expose an outer surface of the sidewall spacer, and forming a conductive contact that contacts the exposed outer surface of the sidewall spacer and a source/drain region of the transistor.
Abstract:
One method discloses performing an etching process to form a contact opening in a layer of insulating material above at least a portion of a source/drain, region wherein, after the completion of the etching process, a portion of a gate structure of the transistor is exposed, selectively forming an oxidizable material on the exposed gate structure, converting at least a portion of the oxidizable material to an oxide material, and forming a conductive contact in the contact opening that is conductively coupled to the source/drain region. A novel transistor device disclosed herein includes an oxide material positioned between a conductive contact and a gate structure of the transistor, wherein the oxide material contacts the conductive contact and contacts a portion, but not all, of the exterior surface of the gate structure.