Abstract:
An electronic component has an integrated protective device which responds in the event of a thermal overload and interrupts a current flow through the component. The protective device has an electrical terminal which may be brought under spring pretension by intrinsic resilience and assumes a mounting position in the pretensioned state and a current interrupting position in the untensioned state.
Abstract:
A tin-plated surface 7 is formed by hot-dip coating a solder containing a lead-free tin as the main component on an electrode 6 of a board 4 with which a connector terminal 1 comes in contact.
Abstract:
A lead plate for connecting a printed circuit board (PCB) of a secondary battery to an bare cell includes a mounting portion connected to the PCB, a joint portion connected to the bare cell, a surface area of the joint portion facing the bare cell being smaller than a surface area of the mounting portion facing the PCB, and a step portion connecting the mounting portion and the joint portion to each other.
Abstract:
A transformer capable of maintaining its height is provided. The transformer is formed on a circuit board having a receiving hole. The transformer comprises a winding module, two magnetic core modules contacting and holding the winding module, a plurality of pins and at least one supporting means. The winding module comprises a winding baseboard and a winding pillar where a winding structure is formed thereon. The winding pillar is received in the receiving hole. Each of the pins comprises a first bent part separating the corresponding pin into a first portion connected to the winding baseboard and a second portion connected to the circuit board around the receiving hole. The supporting means is formed between the first portion of at least one of the pins and the circuit board to contact the first portion and the circuit board to maintain the distance between them.
Abstract:
A packaging board of the type having board terminals soldered on a printed board and including an insulation support member made of a resin disposed on a printed board having tubular support portions configured to receive board terminals, visual recognition windows configured for visually recognizing soldering portions of the board terminals inserted into the printed board through the windows, and engaging portions that engage the board terminals and define insertion amounts of the board terminals.
Abstract:
A system method for manufacturing leads is provided. The method includes providing a conductive sheet, shaping the conductive sheet into at least two opposing longitudinal strips and a plurality of interposing strips, masking lateral sides and a center of the plurality of interposing strips, covering the exposed surface with a conductor and severing the conductive sheet at least along center mask. The plurality of interposing strips are preferably flexible and configurable into desired shapes for potential future attachment to an integrated circuit.
Abstract:
An exemplary socket assembly includes a circuit plate and a socket mounted on the circuit plate for fixing an IC. The socket includes a first fixing member and a second fixing member. The first fixing member includes installed portions, elastic connecting portions, and a first buckling portion, the elastic connecting portions interconnects the electric portions and the first buckling portion. The second fixing member includes electric portions, elastic connecting portions, and a second buckling portion, and the elastic connecting portions interconnect the electric portions and the second buckling portion. Wherein when the IC is attached to the socket, the first buckling portion and the second buckling portion are initially disengaged from each other, pins of the IC is electrically connected with the electric portions, the first buckling portion and the second buckling portion are brought together with the elastic connecting portions elastically deforming, and the first buckling portion and the second buckling portion are locked together and hold the IC in the socket.
Abstract:
The invention relates to an arrangement comprising a shunt resistor with at least an electrically conductive first connecting leg and an electrically conductive second connecting leg. A resistance area of the shunt resistor is electrically connected to the first connecting leg and to the second connecting leg. The arrangement further comprises a circuit carrier with a first metallization and a second metallization. The first connecting leg is directly joined to the first metallization and the second connecting leg is directly joined to the second metallization. The resistance area of the shunt resistor is in thermal contact with the thermally conductive substrate by use of a thermal filler arranged between the resistance area and the substrate, and/or by directly contacting the resistance area with the substrate.The invention further relates to a method for producing an arrangement with a shunt resistor and a circuit carrier.
Abstract:
A tin-plated surface 7 is formed by hot-dip coating a solder containing a lead-free tin as the main component on an electrode 6 of a board 4 with which a connector terminal 1 comes in contact.
Abstract:
A lead plate for connecting a printed circuit board (PCB) of a secondary battery to an bare cell includes a mounting portion connected to the PCB, a joint portion connected to the bare cell, a surface area of the joint portion facing the bare cell being smaller than a surface area of the mounting portion facing the PCB, and a step portion connecting the mounting portion and the joint portion to each other.